{"id":"https://openalex.org/W3199634203","doi":"https://doi.org/10.1109/ijcnn52387.2021.9533513","title":"Spatially Aggregated Photovoltaic Power Prediction Using Wavelet and Convolutional Neural Networks","display_name":"Spatially Aggregated Photovoltaic Power Prediction Using Wavelet and Convolutional Neural Networks","publication_year":2021,"publication_date":"2021-07-18","ids":{"openalex":"https://openalex.org/W3199634203","doi":"https://doi.org/10.1109/ijcnn52387.2021.9533513","mag":"3199634203"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn52387.2021.9533513","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5068439578","display_name":"Sarah Almaghrabi","orcid":"https://orcid.org/0000-0002-2255-494X"},"institutions":[{"id":"https://openalex.org/I82951845","display_name":"RMIT University","ror":"https://ror.org/04ttjf776","country_code":"AU","type":"education","lineage":["https://openalex.org/I82951845"]},{"id":"https://openalex.org/I4210099699","display_name":"Jeddah University","ror":"https://ror.org/015ya8798","country_code":"SA","type":"education","lineage":["https://openalex.org/I4210099699"]}],"countries":["AU","SA"],"is_corresponding":false,"raw_author_name":"Sarah Almaghrabi","raw_affiliation_strings":["School of Computing Technologies RMIT University, Melbourne, Australia","University of Jeddah, Saudi Arabia"],"affiliations":[{"raw_affiliation_string":"School of Computing Technologies RMIT University, Melbourne, Australia","institution_ids":["https://openalex.org/I82951845"]},{"raw_affiliation_string":"University of Jeddah, Saudi Arabia","institution_ids":["https://openalex.org/I4210099699"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5068647269","display_name":"Mashud Rana","orcid":"https://orcid.org/0000-0003-2999-9367"},"institutions":[{"id":"https://openalex.org/I42894916","display_name":"Data61","ror":"https://ror.org/03q397159","country_code":"AU","type":"other","lineage":["https://openalex.org/I1292875679","https://openalex.org/I2801453606","https://openalex.org/I42894916","https://openalex.org/I4387156119"]},{"id":"https://openalex.org/I1292875679","display_name":"Commonwealth Scientific and Industrial Research Organisation","ror":"https://ror.org/03qn8fb07","country_code":"AU","type":"government","lineage":["https://openalex.org/I1292875679","https://openalex.org/I2801453606","https://openalex.org/I4387156119"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Mashud Rana","raw_affiliation_strings":["Data61 CSIRO, Sydney, Australia"],"affiliations":[{"raw_affiliation_string":"Data61 CSIRO, Sydney, Australia","institution_ids":["https://openalex.org/I42894916","https://openalex.org/I1292875679"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5022547615","display_name":"Margaret Hamilton","orcid":"https://orcid.org/0000-0002-3488-4524"},"institutions":[{"id":"https://openalex.org/I82951845","display_name":"RMIT University","ror":"https://ror.org/04ttjf776","country_code":"AU","type":"education","lineage":["https://openalex.org/I82951845"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Margaret Hamilton","raw_affiliation_strings":["School of Computing Technologies RMIT University, Melbourne, Australia"],"affiliations":[{"raw_affiliation_string":"School of Computing Technologies RMIT University, Melbourne, Australia","institution_ids":["https://openalex.org/I82951845"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5031674501","display_name":"Mohammad Saiedur Rahaman","orcid":"https://orcid.org/0000-0003-2320-0112"},"institutions":[{"id":"https://openalex.org/I82951845","display_name":"RMIT University","ror":"https://ror.org/04ttjf776","country_code":"AU","type":"education","lineage":["https://openalex.org/I82951845"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Mohammad Saiedur Rahaman","raw_affiliation_strings":["School of Computing Technologies RMIT University, Melbourne, Australia"],"affiliations":[{"raw_affiliation_string":"School of Computing Technologies RMIT University, Melbourne, Australia","institution_ids":["https://openalex.org/I82951845"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.508,"has_fulltext":false,"cited_by_count":5,"citation_normalized_percentile":{"value":0.756396,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":79,"max":81},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"8"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11276","display_name":"Solar Radiation and Photovoltaics","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11276","display_name":"Solar Radiation and Photovoltaics","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10468","display_name":"Photovoltaic System Optimization Techniques","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/2105","display_name":"Renewable Energy, Sustainability and the Environment"},"field":{"id":"https://openalex.org/fields/21","display_name":"Energy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.67010397},{"id":"https://openalex.org/C47432892","wikidata":"https://www.wikidata.org/wiki/Q831390","display_name":"Wavelet","level":2,"score":0.66579837},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.6523091},{"id":"https://openalex.org/C41291067","wikidata":"https://www.wikidata.org/wiki/Q1897785","display_name":"Photovoltaic system","level":2,"score":0.6128922},{"id":"https://openalex.org/C196216189","wikidata":"https://www.wikidata.org/wiki/Q2867","display_name":"Wavelet transform","level":3,"score":0.5695345},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.46975544},{"id":"https://openalex.org/C423512","wikidata":"https://www.wikidata.org/wiki/Q383973","display_name":"Electricity generation","level":3,"score":0.4258174},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.42311162},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3859554},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3695457},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.32502013},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.14834034},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn52387.2021.9533513","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/7","score":0.87,"display_name":"Affordable and clean energy"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":27,"referenced_works":["https://openalex.org/W1653130573","https://openalex.org/W1978869485","https://openalex.org/W1983113304","https://openalex.org/W1988989532","https://openalex.org/W1990785420","https://openalex.org/W2019495121","https://openalex.org/W2026844045","https://openalex.org/W2031939255","https://openalex.org/W2059504782","https://openalex.org/W2101234009","https://openalex.org/W2132984323","https://openalex.org/W2173259274","https://openalex.org/W2200377847","https://openalex.org/W2536864794","https://openalex.org/W2618530766","https://openalex.org/W2760948241","https://openalex.org/W2762797296","https://openalex.org/W2773629498","https://openalex.org/W2800808369","https://openalex.org/W2950072808","https://openalex.org/W2990430732","https://openalex.org/W2991020813","https://openalex.org/W3009377873","https://openalex.org/W3089349310","https://openalex.org/W3089837286","https://openalex.org/W3091418793","https://openalex.org/W3120853195"],"related_works":["https://openalex.org/W4293226380","https://openalex.org/W2902714807","https://openalex.org/W2784060934","https://openalex.org/W2537489131","https://openalex.org/W2394084632","https://openalex.org/W2382174632","https://openalex.org/W2358293514","https://openalex.org/W2129959498","https://openalex.org/W2077021924","https://openalex.org/W2046633342"],"abstract_inverted_index":{"Forecasting":[0],"the":[1,17,28,88,101,129,144],"power":[2,21,34,45,92],"generation":[3,35,46],"from":[4,36,128],"intermittent":[5],"renewable":[6],"energy":[7],"sources,":[8],"such":[9],"as":[10],"Photovoltaic":[11],"(PV)":[12],"systems,":[13],"is":[14,48,138],"crucial":[15],"for":[16],"reliable":[18],"operations":[19],"of":[20,30],"systems.":[22],"In":[23],"this":[24],"paper,":[25],"we":[26],"consider":[27],"task":[29],"spatially":[31],"aggregated":[32],"PV":[33,42,44,91],"large-scale,":[37],"grid-connected":[38],"and":[39,52,109,118,142,151],"geographically":[40],"dispersed":[41],"sites.":[43],"data":[47],"highly":[49,89],"uncertain,":[50],"non-linear":[51],"non-stationary,":[53],"making":[54],"accurate":[55],"forecasting":[56],"very":[57],"challenging.":[58],"We":[59],"present":[60],"a":[61,125],"new":[62],"approach,":[63],"Wavelet":[64,71],"Convolutional":[65,75],"Neural":[66,76],"Networks":[67,77],"(WCNNs),":[68],"by":[69],"combining":[70],"Transformation":[72],"(WT)":[73],"with":[74,150],"(CNNs).":[78],"The":[79],"WCNNs":[80,137],"approach":[81,141],"first":[82],"applies":[83],"time-invariant":[84],"WT":[85],"to":[86],"decompose":[87],"fluctuating":[90],"time":[93,107],"series":[94],"into":[95],"multiple":[96],"components.":[97],"It":[98],"then":[99],"predicts":[100],"approximation":[102],"(i.e.,":[103,111],"low":[104],"frequency":[105,113],"smoothed":[106],"series)":[108],"details":[110],"high":[112],"random":[114],"noise)":[115],"using":[116,124],"CNNs":[117],"linear":[119],"regression,":[120],"respectively.":[121],"Extensive":[122],"evaluation":[123],"real":[126],"dataset":[127],"Australian":[130],"Energy":[131],"Market":[132],"Operator":[133],"(AEMO)":[134],"shows":[135],"that":[136],"an":[139],"effective":[140],"outperforms":[143],"state-of-the-art":[145],"machine":[146],"learning":[147],"models":[148],"both":[149],"without":[152],"WT.":[153]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3199634203","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":1}],"updated_date":"2024-12-30T23:27:54.796973","created_date":"2021-09-27"}