{"id":"https://openalex.org/W3201246017","doi":"https://doi.org/10.1109/ijcnn52387.2021.9533334","title":"Concept Drift Detection via Boundary Shrinking","display_name":"Concept Drift Detection via Boundary Shrinking","publication_year":2021,"publication_date":"2021-07-18","ids":{"openalex":"https://openalex.org/W3201246017","doi":"https://doi.org/10.1109/ijcnn52387.2021.9533334","mag":"3201246017"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn52387.2021.9533334","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5026150925","display_name":"Yoshihiro Okawa","orcid":"https://orcid.org/0000-0001-5095-4927"},"institutions":[{"id":"https://openalex.org/I2252096349","display_name":"Fujitsu (Japan)","ror":"https://ror.org/038e2g226","country_code":"JP","type":"company","lineage":["https://openalex.org/I2252096349"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Yoshihiro Okawa","raw_affiliation_strings":["Artificial Intelligence Laboratory, Fujitsu Laboratories Ltd., Kawasaki, Kanagawa, Japan"],"affiliations":[{"raw_affiliation_string":"Artificial Intelligence Laboratory, Fujitsu Laboratories Ltd., Kawasaki, Kanagawa, Japan","institution_ids":["https://openalex.org/I2252096349"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101637737","display_name":"Kenichi Kobayashi","orcid":"https://orcid.org/0000-0001-9827-8315"},"institutions":[{"id":"https://openalex.org/I2252096349","display_name":"Fujitsu (Japan)","ror":"https://ror.org/038e2g226","country_code":"JP","type":"company","lineage":["https://openalex.org/I2252096349"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"Kenichi Kobayashi","raw_affiliation_strings":["Artificial Intelligence Laboratory, Fujitsu Laboratories Ltd., Kawasaki, Kanagawa, Japan"],"affiliations":[{"raw_affiliation_string":"Artificial Intelligence Laboratory, Fujitsu Laboratories Ltd., Kawasaki, Kanagawa, Japan","institution_ids":["https://openalex.org/I2252096349"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.297,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.253756,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":72,"max":76},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"8"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12761","display_name":"Data Stream Mining Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12761","display_name":"Data Stream Mining Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10400","display_name":"Network Security and Intrusion Detection","score":0.9723,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11407","display_name":"Innovative Microfluidic and Catalytic Techniques Innovation","score":0.9527,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/resizing","display_name":"Resizing","score":0.43088526}],"concepts":[{"id":"https://openalex.org/C62354387","wikidata":"https://www.wikidata.org/wiki/Q875399","display_name":"Boundary (topology)","level":2,"score":0.58296454},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.43205804},{"id":"https://openalex.org/C56281022","wikidata":"https://www.wikidata.org/wiki/Q11308039","display_name":"Resizing","level":3,"score":0.43088526},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.38793916},{"id":"https://openalex.org/C39432304","wikidata":"https://www.wikidata.org/wiki/Q188847","display_name":"Environmental science","level":0,"score":0.33457714},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.13528985},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.08486989},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C2910001868","wikidata":"https://www.wikidata.org/wiki/Q458","display_name":"European union","level":2,"score":0.0},{"id":"https://openalex.org/C105639569","wikidata":"https://www.wikidata.org/wiki/Q582577","display_name":"Economic policy","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn52387.2021.9533334","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Peace, justice, and strong institutions","id":"https://metadata.un.org/sdg/16","score":0.72}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":32,"referenced_works":["https://openalex.org/W1585854823","https://openalex.org/W1965395441","https://openalex.org/W1977640460","https://openalex.org/W1995357300","https://openalex.org/W2050246116","https://openalex.org/W2099419573","https://openalex.org/W2112076978","https://openalex.org/W2143991132","https://openalex.org/W2157103390","https://openalex.org/W2252617635","https://openalex.org/W2470412537","https://openalex.org/W2605253252","https://openalex.org/W2626967530","https://openalex.org/W27170557","https://openalex.org/W2724912698","https://openalex.org/W2898017895","https://openalex.org/W2898158860","https://openalex.org/W2912934387","https://openalex.org/W2948194985","https://openalex.org/W2964212410","https://openalex.org/W2964273393","https://openalex.org/W2970859221","https://openalex.org/W2971274354","https://openalex.org/W3000948009","https://openalex.org/W3082998439","https://openalex.org/W3089569838","https://openalex.org/W3089725231","https://openalex.org/W3089786543","https://openalex.org/W3090724444","https://openalex.org/W3102015031","https://openalex.org/W4212883601","https://openalex.org/W4285719527"],"related_works":["https://openalex.org/W647263804","https://openalex.org/W4391375266","https://openalex.org/W4390595827","https://openalex.org/W4200241426","https://openalex.org/W2899084033","https://openalex.org/W2748952813","https://openalex.org/W246416693","https://openalex.org/W2166847561","https://openalex.org/W163671557","https://openalex.org/W1579571183"],"abstract_inverted_index":{"A":[0],"change":[1],"in":[2,70,79,90,125,150,162],"data":[3],"distribution,":[4],"called":[5,60],"\"concept":[6],"drift,\"":[7],"often":[8],"degrades":[9],"performance":[10,39],"of":[11,57,94,133,164,171],"machine-learning":[12],"models":[13,59,77],"trained":[14],"beforehand.":[15],"However,":[16],"detecting":[17],"concept":[18],"drift":[19,36,71,110,123,165],"and":[20,32,120,146,174],"identifying":[21],"where":[22,108],"it":[23,33,104],"occurs":[24,111],"by":[25,135],"hand":[26],"is":[27,40],"a":[28,91,95,137],"quite":[29],"costly":[30],"task":[31],"sometimes":[34],"overlooks":[35],"until":[37],"the":[38,75,109,131,151,169],"significantly":[41],"degraded":[42],"during":[43],"operation.":[44],"In":[45],"this":[46],"study,":[47],"we":[48,73],"present":[49],"an":[50,55],"unsupervised":[51],"concept-drift-detection":[52],"method":[53],"with":[54,154],"ensemble":[56],"inspector":[58,76],"\"Concept-Drift":[61],"Detection":[62],"via":[63],"Boundary":[64],"Shrinking":[65],"(CDDBS)\".":[66],"To":[67],"reduce":[68],"delays":[69],"detection,":[72],"train":[74],"used":[78],"CDDBS":[80,134,157],"so":[81],"that":[82],"their":[83,126],"decision":[84,100],"boundaries":[85,101],"would":[86],"be":[87],"intentionally":[88],"shrunk":[89,99],"classification":[92],"region":[93],"certain":[96],"class.":[97],"These":[98],"also":[102],"make":[103],"possible":[105],"to":[106,122],"identify":[107],"without":[112,167,179],"using":[113,136,180],"true":[114,181],"labels":[115],"because":[116],"they":[117],"react":[118],"individually":[119],"sensitively":[121],"occurring":[124],"corresponding":[127],"classes.":[128],"We":[129],"evaluated":[130],"effectiveness":[132],"simple":[138],"numerical":[139],"dataset,":[140],"several":[141],"public":[142],"synthetic":[143,155],"benchmark":[144],"datasets":[145],"high-dimensional":[147],"real":[148],"images":[149],"CIFAR-10":[152],"dataset":[153],"drift.":[156],"outperformed":[158],"other":[159],"drift-detection":[160],"methods":[161],"sensitivity":[163],"detection":[166],"increasing":[168],"number":[170],"false":[172],"alarms":[173],"successfully":[175],"identified":[176],"drift-occurring":[177],"classes":[178],"labels.":[182]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3201246017","counts_by_year":[{"year":2023,"cited_by_count":3}],"updated_date":"2025-01-21T06:31:16.509127","created_date":"2021-09-27"}