{"id":"https://openalex.org/W3014319644","doi":"https://doi.org/10.1109/ijcnn48605.2020.9207519","title":"AM-MobileNet1D: A Portable Model for Speaker Recognition","display_name":"AM-MobileNet1D: A Portable Model for Speaker Recognition","publication_year":2020,"publication_date":"2020-07-01","ids":{"openalex":"https://openalex.org/W3014319644","doi":"https://doi.org/10.1109/ijcnn48605.2020.9207519","mag":"3014319644"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn48605.2020.9207519","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"proceedings-article","indexed_in":["arxiv","crossref","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2004.00132","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5082037252","display_name":"Jo\u00e3o Ant\u00f4nio Chagas Nunes","orcid":null},"institutions":[{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Joao Antonio Chagas Nunes","raw_affiliation_strings":["Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Recife, Brasil"],"affiliations":[{"raw_affiliation_string":"Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Recife, Brasil","institution_ids":["https://openalex.org/I25112270"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021701067","display_name":"David Mac\u00eado","orcid":"https://orcid.org/0000-0002-2527-4548"},"institutions":[{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]},{"id":"https://openalex.org/I60158472","display_name":"Concordia University","ror":"https://ror.org/0420zvk78","country_code":"CA","type":"education","lineage":["https://openalex.org/I60158472"]},{"id":"https://openalex.org/I70931966","display_name":"Universit\u00e9 de Montr\u00e9al","ror":"https://ror.org/0161xgx34","country_code":"CA","type":"education","lineage":["https://openalex.org/I70931966"]}],"countries":["BR","CA"],"is_corresponding":false,"raw_author_name":"David Macedo","raw_affiliation_strings":["Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Recife, Brasil","Montreal Institute for Learning Algorithms, University of Montreal, Canada"],"affiliations":[{"raw_affiliation_string":"Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Recife, Brasil","institution_ids":["https://openalex.org/I25112270"]},{"raw_affiliation_string":"Montreal Institute for Learning Algorithms, University of Montreal, Canada","institution_ids":["https://openalex.org/I60158472","https://openalex.org/I70931966"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5086345001","display_name":"Cleber Zanchettin","orcid":"https://orcid.org/0000-0001-6421-9747"},"institutions":[{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]},{"id":"https://openalex.org/I111979921","display_name":"Northwestern University","ror":"https://ror.org/000e0be47","country_code":"US","type":"education","lineage":["https://openalex.org/I111979921"]}],"countries":["BR","US"],"is_corresponding":false,"raw_author_name":"Cleber Zanchettin","raw_affiliation_strings":["Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Recife, Brasil","Department of Chemical and Biological Engineering, Northwestern University, Evanston, United States of America"],"affiliations":[{"raw_affiliation_string":"Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Recife, Brasil","institution_ids":["https://openalex.org/I25112270"]},{"raw_affiliation_string":"Department of Chemical and Biological Engineering, Northwestern University, Evanston, United States of America","institution_ids":["https://openalex.org/I111979921"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":16,"citation_normalized_percentile":{"value":0.951987,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":90,"max":91},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"8"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11309","display_name":"Music and Audio Processing","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/timit","display_name":"TIMIT","score":0.7115538},{"id":"https://openalex.org/keywords/identification","display_name":"Identification","score":0.53969496},{"id":"https://openalex.org/keywords/margin","display_name":"Margin (machine learning)","score":0.45811054}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.84354424},{"id":"https://openalex.org/C2778724510","wikidata":"https://www.wikidata.org/wiki/Q7670405","display_name":"TIMIT","level":3,"score":0.7115538},{"id":"https://openalex.org/C116834253","wikidata":"https://www.wikidata.org/wiki/Q2039217","display_name":"Identification (biology)","level":2,"score":0.53969496},{"id":"https://openalex.org/C186967261","wikidata":"https://www.wikidata.org/wiki/Q5082128","display_name":"Mobile device","level":2,"score":0.5109419},{"id":"https://openalex.org/C148417208","wikidata":"https://www.wikidata.org/wiki/Q4825882","display_name":"Authentication (law)","level":2,"score":0.50384206},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.47863618},{"id":"https://openalex.org/C774472","wikidata":"https://www.wikidata.org/wiki/Q6760393","display_name":"Margin (machine learning)","level":2,"score":0.45811054},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4188515},{"id":"https://openalex.org/C144543869","wikidata":"https://www.wikidata.org/wiki/Q2738570","display_name":"Mobile computing","level":2,"score":0.41537815},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.364605},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.27298784},{"id":"https://openalex.org/C23224414","wikidata":"https://www.wikidata.org/wiki/Q176769","display_name":"Hidden Markov model","level":2,"score":0.15075079},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.10558885},{"id":"https://openalex.org/C59822182","wikidata":"https://www.wikidata.org/wiki/Q441","display_name":"Botany","level":1,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn48605.2020.9207519","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2004.00132","pdf_url":"https://arxiv.org/pdf/2004.00132","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2004.00132","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2004.00132","pdf_url":"https://arxiv.org/pdf/2004.00132","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.89,"id":"https://metadata.un.org/sdg/7","display_name":"Affordable and clean energy"}],"grants":[],"datasets":[],"versions":["https://openalex.org/W3014319644","https://openalex.org/W3104761488"],"referenced_works_count":35,"referenced_works":["https://openalex.org/W102958777","https://openalex.org/W1635512741","https://openalex.org/W1861492603","https://openalex.org/W1996950552","https://openalex.org/W2025013471","https://openalex.org/W2039057510","https://openalex.org/W2046056978","https://openalex.org/W2101261946","https://openalex.org/W2112796928","https://openalex.org/W2121812409","https://openalex.org/W2146448989","https://openalex.org/W2150769028","https://openalex.org/W2194775991","https://openalex.org/W2292259253","https://openalex.org/W2570343428","https://openalex.org/W2612434969","https://openalex.org/W2612445135","https://openalex.org/W2726515241","https://openalex.org/W2748488820","https://openalex.org/W2808631503","https://openalex.org/W2889151164","https://openalex.org/W2890964092","https://openalex.org/W2902922150","https://openalex.org/W2915887922","https://openalex.org/W2963163009","https://openalex.org/W2963495494","https://openalex.org/W2964052309","https://openalex.org/W3103152812","https://openalex.org/W3103933587","https://openalex.org/W3106250896","https://openalex.org/W4234330420","https://openalex.org/W4289232656","https://openalex.org/W4297775537","https://openalex.org/W639708223","https://openalex.org/W67277430"],"related_works":["https://openalex.org/W80423236","https://openalex.org/W4243905374","https://openalex.org/W3164669818","https://openalex.org/W2906993205","https://openalex.org/W2785815065","https://openalex.org/W2090296580","https://openalex.org/W2048100608","https://openalex.org/W1796074903","https://openalex.org/W1576249345","https://openalex.org/W1573546415"],"abstract_inverted_index":{"Speaker":[0,3,94],"Recognition":[1],"and":[2,15,22,44,57,60,77,106,133],"Identification":[4,95],"are":[5,70],"challenging":[6],"tasks":[7],"with":[8,52,142],"essential":[9],"applications":[10,38,51],"such":[11],"as":[12],"automation,":[13],"authentication,":[14],"security.":[16],"Deep":[17],"learning":[18,65],"approaches":[19],"like":[20],"SincNet":[21,132],"AM-SincNet":[23,134],"presented":[24],"great":[25],"results":[26],"on":[27,96,104,126],"these":[28,34],"tasks.":[29],"The":[30,47,63],"promising":[31],"performance":[32],"took":[33],"models":[35],"to":[36,93],"real-world":[37],"that":[39],"becoming":[40],"fundamentally":[41],"end-user":[42],"driven":[43],"mostly":[45],"mobile.":[46],"mobile":[48,97],"computation":[49],"requires":[50],"reduced":[53],"storage":[54,128],"size,":[55],"non-processing":[56],"memory":[58],"intensive":[59],"efficient":[61],"energy-consuming.":[62],"deep":[64],"approaches,":[66],"in":[67],"contrast,":[68],"usually":[69],"energy":[71],"expensive,":[72],"demanding":[73],"storage,":[74],"processing":[75],"power,":[76],"memory.":[78],"To":[79],"address":[80],"this":[81],"demand,":[82],"we":[83],"propose":[84],"a":[85],"portable":[86],"model":[87,121,138],"called":[88],"Additive":[89],"Margin":[90],"MobileNet1D":[91],"(AM-MobileNet1D)":[92],"devices.":[98],"We":[99],"evaluated":[100],"the":[101,115,119,137],"proposed":[102,120],"approach":[103],"TIMIT":[105],"MIT":[107],"datasets":[108],"obtaining":[109],"equivalent":[110],"or":[111],"better":[112],"performances":[113],"concerning":[114],"baseline":[116],"methods.":[117],"Additionally,":[118],"takes":[122],"only":[123],"11.6":[124],"megabytes":[125],"disk":[127],"against":[129],"91.2":[130],"from":[131],"architectures,":[135],"making":[136],"seven":[139],"times":[140,144],"faster,":[141],"eight":[143],"fewer":[145],"parameters.":[146]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3014319644","counts_by_year":[{"year":2023,"cited_by_count":6},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":5},{"year":2020,"cited_by_count":3}],"updated_date":"2025-01-22T16:16:08.067921","created_date":"2020-04-10"}