{"id":"https://openalex.org/W3089808701","doi":"https://doi.org/10.1109/ijcnn48605.2020.9207079","title":"Two Novel Approaches for Automatic Labelling in Semi-Supervised Methods","display_name":"Two Novel Approaches for Automatic Labelling in Semi-Supervised Methods","publication_year":2020,"publication_date":"2020-07-01","ids":{"openalex":"https://openalex.org/W3089808701","doi":"https://doi.org/10.1109/ijcnn48605.2020.9207079","mag":"3089808701"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn48605.2020.9207079","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5074341219","display_name":"Cephas Alves da Silveira Barreto","orcid":"https://orcid.org/0000-0002-4756-8571"},"institutions":[{"id":"https://openalex.org/I35046152","display_name":"Universidade Federal do Rio Grande do Norte","ror":"https://ror.org/04wn09761","country_code":"BR","type":"education","lineage":["https://openalex.org/I35046152"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Cephas A. da S. Barreto","raw_affiliation_strings":["Federal University of Rio Grande do Norte (UFRN), Natal, Brazil"],"affiliations":[{"raw_affiliation_string":"Federal University of Rio Grande do Norte (UFRN), Natal, Brazil","institution_ids":["https://openalex.org/I35046152"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5019144108","display_name":"Anne M. P. Canuto","orcid":"https://orcid.org/0000-0002-3684-3814"},"institutions":[{"id":"https://openalex.org/I35046152","display_name":"Universidade Federal do Rio Grande do Norte","ror":"https://ror.org/04wn09761","country_code":"BR","type":"education","lineage":["https://openalex.org/I35046152"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Anne Magaly de P. Canuto","raw_affiliation_strings":["Federal University of Rio Grande do Norte (UFRN), Natal, Brazil"],"affiliations":[{"raw_affiliation_string":"Federal University of Rio Grande do Norte (UFRN), Natal, Brazil","institution_ids":["https://openalex.org/I35046152"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5039883944","display_name":"Jo\u00e3o C. Xavier-J\u00fanior","orcid":"https://orcid.org/0000-0003-1517-2211"},"institutions":[{"id":"https://openalex.org/I35046152","display_name":"Universidade Federal do Rio Grande do Norte","ror":"https://ror.org/04wn09761","country_code":"BR","type":"education","lineage":["https://openalex.org/I35046152"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Joao C. Xavier","raw_affiliation_strings":["Digital Metropolis Institute (IMD), Federal University of Rio Grande do Norte (UFRN), Natal, Brazil"],"affiliations":[{"raw_affiliation_string":"Digital Metropolis Institute (IMD), Federal University of Rio Grande do Norte (UFRN), Natal, Brazil","institution_ids":["https://openalex.org/I35046152"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5081806326","display_name":"Arthur C. Gorg\u00f4nio","orcid":"https://orcid.org/0000-0002-1824-9600"},"institutions":[{"id":"https://openalex.org/I35046152","display_name":"Universidade Federal do Rio Grande do Norte","ror":"https://ror.org/04wn09761","country_code":"BR","type":"education","lineage":["https://openalex.org/I35046152"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Arthur Costa Gorgonio","raw_affiliation_strings":["Dept. of Informatics and Applicated Mathematics (DIMAp), Federal University of Rio Grande do Norte (UFRN), Natal, Brazil"],"affiliations":[{"raw_affiliation_string":"Dept. of Informatics and Applicated Mathematics (DIMAp), Federal University of Rio Grande do Norte (UFRN), Natal, Brazil","institution_ids":["https://openalex.org/I35046152"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5047951669","display_name":"Douglas Felipe Alves Lima","orcid":null},"institutions":[{"id":"https://openalex.org/I35046152","display_name":"Universidade Federal do Rio Grande do Norte","ror":"https://ror.org/04wn09761","country_code":"BR","type":"education","lineage":["https://openalex.org/I35046152"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Douglas F. A. Lima","raw_affiliation_strings":["Digital Metropolis Institute (IMD), Federal University of Rio Grande do Norte (UFRN), Natal, Brazil"],"affiliations":[{"raw_affiliation_string":"Digital Metropolis Institute (IMD), Federal University of Rio Grande do Norte (UFRN), Natal, Brazil","institution_ids":["https://openalex.org/I35046152"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5090086629","display_name":"Ranna Raabe Fernandes Costa","orcid":null},"institutions":[{"id":"https://openalex.org/I35046152","display_name":"Universidade Federal do Rio Grande do Norte","ror":"https://ror.org/04wn09761","country_code":"BR","type":"education","lineage":["https://openalex.org/I35046152"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Ranna R. F. da Costa","raw_affiliation_strings":["Digital Metropolis Institute (IMD), Federal University of Rio Grande do Norte (UFRN), Natal, Brazil"],"affiliations":[{"raw_affiliation_string":"Digital Metropolis Institute (IMD), Federal University of Rio Grande do Norte (UFRN), Natal, Brazil","institution_ids":["https://openalex.org/I35046152"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.158,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.24003,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":69,"max":73},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"8"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11220","display_name":"Water Systems and Optimization","score":0.9852,"subfield":{"id":"https://openalex.org/subfields/2205","display_name":"Civil and Structural Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9828,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/labeled-data","display_name":"Labeled data","score":0.53960234},{"id":"https://openalex.org/keywords/supervised-learning","display_name":"Supervised Learning","score":0.52172744},{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.51045644}],"concepts":[{"id":"https://openalex.org/C2780523633","wikidata":"https://www.wikidata.org/wiki/Q380709","display_name":"Labelling","level":2,"score":0.7694772},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.7511978},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7483712},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7075373},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5774579},{"id":"https://openalex.org/C2776145971","wikidata":"https://www.wikidata.org/wiki/Q30673951","display_name":"Labeled data","level":2,"score":0.53960234},{"id":"https://openalex.org/C136389625","wikidata":"https://www.wikidata.org/wiki/Q334384","display_name":"Supervised learning","level":3,"score":0.52172744},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.51045644},{"id":"https://openalex.org/C58973888","wikidata":"https://www.wikidata.org/wiki/Q1041418","display_name":"Semi-supervised learning","level":2,"score":0.4763941},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.45363128},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4308544},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.35779014},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.079286724},{"id":"https://openalex.org/C73484699","wikidata":"https://www.wikidata.org/wiki/Q161733","display_name":"Criminology","level":1,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn48605.2020.9207079","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":32,"referenced_works":["https://openalex.org/W1565746575","https://openalex.org/W1824737917","https://openalex.org/W1968817125","https://openalex.org/W1985767166","https://openalex.org/W1990334093","https://openalex.org/W2007546777","https://openalex.org/W2028010766","https://openalex.org/W2040356073","https://openalex.org/W2043356548","https://openalex.org/W2079057609","https://openalex.org/W2079872820","https://openalex.org/W2098370488","https://openalex.org/W2102184039","https://openalex.org/W2123372746","https://openalex.org/W2124868070","https://openalex.org/W2133556223","https://openalex.org/W2133990480","https://openalex.org/W2395084017","https://openalex.org/W2487087946","https://openalex.org/W2528315959","https://openalex.org/W2591922431","https://openalex.org/W2600148249","https://openalex.org/W2619296796","https://openalex.org/W2892065670","https://openalex.org/W2895931117","https://openalex.org/W2964159205","https://openalex.org/W2977628355","https://openalex.org/W4210997624","https://openalex.org/W4232478844","https://openalex.org/W46659105","https://openalex.org/W605727707","https://openalex.org/W92894758"],"related_works":["https://openalex.org/W4312414840","https://openalex.org/W4206276646","https://openalex.org/W34092691","https://openalex.org/W3004135598","https://openalex.org/W2943467239","https://openalex.org/W2794908468","https://openalex.org/W2168489430","https://openalex.org/W192740413","https://openalex.org/W1571801203","https://openalex.org/W101422005"],"abstract_inverted_index":{"In":[0,130,162,189,210],"real":[1],"world":[2],"classification":[3,28,226],"problems,":[4],"the":[5,20,61,76,109,120,124,133,142,148,156,178,195,220],"amount":[6],"of":[7,26,38,63,101,126,158,181,184,202],"labelled":[8,39,84,105,110,121,139,143],"data":[9],"is":[10,30,60,104],"usually":[11],"limited":[12],"(very":[13],"hard":[14],"or":[15],"expensive":[16],"to":[17,34,47,55,79,86,91,119,136,194],"manually":[18],"label":[19],"instances).":[21],"However,":[22,112],"a":[23,27,36,42,49,82,88,93,98,127,159,182],"natural":[24],"limitation":[25],"algorithm":[29],"that":[31],"it":[32,203],"needs":[33],"have":[35,72,151],"set":[37,144],"instances":[40,103,118,140],"with":[41],"reasonable":[43,50],"size":[44],"in":[45,75,96,108,141,155,173],"order":[46],"achieve":[48],"performance.":[51],"Therefore,":[52],"one":[53,200],"solution":[54],"smooth":[56],"out":[57],"this":[58,113,163],"problem":[59],"use":[62,80],"semi-supervised":[64,67,128,160,174],"learning.":[65],"Several":[66],"approaches":[68,169],"(e.g.":[69],"self":[70],"training)":[71],"been":[73],"proposed":[74],"literature,":[77],"aiming":[78],"only":[81],"few":[83],"instances,":[85],"train":[87],"classifier,":[89],"and":[90,106,199],"apply":[92],"labelling":[94,149,172],"process":[95],"which":[97],"high":[99],"number":[100],"unlabelled":[102],"included":[107],"set.":[111],"approach":[114],"can":[115],"include":[116,137],"unreliable":[117],"set,":[122],"impairing":[123],"performance":[125,157],"method.":[129,161],"other":[131,221],"words,":[132],"selection":[134,187],"criterion":[135],"newly":[138],"as":[145,147,186,208],"well":[146],"step":[150],"an":[152],"important":[153],"effect":[154],"paper,":[164],"we":[165,191],"propose":[166],"two":[167,222],"new":[168],"for":[170],"automatic":[171],"methods":[175,213,223],"based":[176],"on":[177],"prediction":[179],"agreement":[180],"pool":[183],"classifier":[185],"criterion.":[188],"addition,":[190],"compare":[192],"them":[193],"standard":[196],"self-training":[197],"method,":[198],"variation":[201],"called":[204],"Flexible":[205],"Confidence":[206],"Classifier":[207],"baselines.":[209],"general,":[211],"both":[212],"obtained":[214],"significantly":[215],"better":[216],"predictive":[217],"results":[218],"than":[219],"over":[224],"40":[225],"datasets.":[227]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3089808701","counts_by_year":[{"year":2022,"cited_by_count":2}],"updated_date":"2025-01-07T15:53:34.163591","created_date":"2020-10-08"}