{"id":"https://openalex.org/W3090768765","doi":"https://doi.org/10.1109/ijcnn48605.2020.9206672","title":"Flex-PIM: A Ferroelectric FET based Vector Matrix Multiplication Engine with Dynamical Bitwidth and Floating Point Precision","display_name":"Flex-PIM: A Ferroelectric FET based Vector Matrix Multiplication Engine with Dynamical Bitwidth and Floating Point Precision","publication_year":2020,"publication_date":"2020-07-01","ids":{"openalex":"https://openalex.org/W3090768765","doi":"https://doi.org/10.1109/ijcnn48605.2020.9206672","mag":"3090768765"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn48605.2020.9206672","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5061038190","display_name":"Yun Long","orcid":"https://orcid.org/0000-0003-0627-489X"},"institutions":[{"id":"https://openalex.org/I130701444","display_name":"Georgia Institute of Technology","ror":"https://ror.org/01zkghx44","country_code":"US","type":"education","lineage":["https://openalex.org/I130701444"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yun Long","raw_affiliation_strings":["School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA"],"affiliations":[{"raw_affiliation_string":"School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA","institution_ids":["https://openalex.org/I130701444"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100670402","display_name":"Edward Lee","orcid":"https://orcid.org/0000-0002-5708-2866"},"institutions":[{"id":"https://openalex.org/I130701444","display_name":"Georgia Institute of Technology","ror":"https://ror.org/01zkghx44","country_code":"US","type":"education","lineage":["https://openalex.org/I130701444"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Edward Lee","raw_affiliation_strings":["School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA"],"affiliations":[{"raw_affiliation_string":"School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA","institution_ids":["https://openalex.org/I130701444"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100374575","display_name":"Daehyun Kim","orcid":"https://orcid.org/0000-0002-5582-3579"},"institutions":[{"id":"https://openalex.org/I130701444","display_name":"Georgia Institute of Technology","ror":"https://ror.org/01zkghx44","country_code":"US","type":"education","lineage":["https://openalex.org/I130701444"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Daehyun Kim","raw_affiliation_strings":["School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA"],"affiliations":[{"raw_affiliation_string":"School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA","institution_ids":["https://openalex.org/I130701444"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5009591041","display_name":"Saibal Mukhopadhyay","orcid":"https://orcid.org/0000-0002-8894-3390"},"institutions":[{"id":"https://openalex.org/I130701444","display_name":"Georgia Institute of Technology","ror":"https://ror.org/01zkghx44","country_code":"US","type":"education","lineage":["https://openalex.org/I130701444"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Saibal Mukhopadhyay","raw_affiliation_strings":["School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA"],"affiliations":[{"raw_affiliation_string":"School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA","institution_ids":["https://openalex.org/I130701444"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.186,"has_fulltext":false,"cited_by_count":6,"citation_normalized_percentile":{"value":0.733163,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":81,"max":82},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"8"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12808","display_name":"Ferroelectric and Negative Capacitance Devices","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12808","display_name":"Ferroelectric and Negative Capacitance Devices","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10502","display_name":"Advanced Memory and Neural Computing","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":0.9952,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/flex","display_name":"FLEX","score":0.681787}],"concepts":[{"id":"https://openalex.org/C2776252893","wikidata":"https://www.wikidata.org/wiki/Q1364836","display_name":"FLEX","level":2,"score":0.681787},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.66046154},{"id":"https://openalex.org/C84211073","wikidata":"https://www.wikidata.org/wiki/Q117879","display_name":"Floating point","level":2,"score":0.5644103},{"id":"https://openalex.org/C9390403","wikidata":"https://www.wikidata.org/wiki/Q3966","display_name":"Computer hardware","level":1,"score":0.5484184},{"id":"https://openalex.org/C2780595030","wikidata":"https://www.wikidata.org/wiki/Q3860309","display_name":"Multiplication (music)","level":2,"score":0.4863918},{"id":"https://openalex.org/C17349429","wikidata":"https://www.wikidata.org/wiki/Q1049914","display_name":"Matrix multiplication","level":3,"score":0.4846814},{"id":"https://openalex.org/C46362747","wikidata":"https://www.wikidata.org/wiki/Q173431","display_name":"CMOS","level":2,"score":0.48324737},{"id":"https://openalex.org/C82876162","wikidata":"https://www.wikidata.org/wiki/Q17096504","display_name":"Latency (audio)","level":2,"score":0.44386384},{"id":"https://openalex.org/C42935608","wikidata":"https://www.wikidata.org/wiki/Q190411","display_name":"Field-programmable gate array","level":2,"score":0.43558028},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.38453108},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.38018775},{"id":"https://openalex.org/C24326235","wikidata":"https://www.wikidata.org/wiki/Q126095","display_name":"Electronic engineering","level":1,"score":0.25946504},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.23144421},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.1267555},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C24890656","wikidata":"https://www.wikidata.org/wiki/Q82811","display_name":"Acoustics","level":1,"score":0.0},{"id":"https://openalex.org/C84114770","wikidata":"https://www.wikidata.org/wiki/Q46344","display_name":"Quantum","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn48605.2020.9206672","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Affordable and clean energy","id":"https://metadata.un.org/sdg/7","score":0.74}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":18,"referenced_works":["https://openalex.org/W1536680647","https://openalex.org/W1686810756","https://openalex.org/W1861492603","https://openalex.org/W2108598243","https://openalex.org/W2163605009","https://openalex.org/W2194775991","https://openalex.org/W2508602506","https://openalex.org/W2518281301","https://openalex.org/W2613989746","https://openalex.org/W2765234579","https://openalex.org/W2801000640","https://openalex.org/W2900128795","https://openalex.org/W2920866490","https://openalex.org/W2952429406","https://openalex.org/W2963367920","https://openalex.org/W3092032880","https://openalex.org/W3123290820","https://openalex.org/W4288083474"],"related_works":["https://openalex.org/W752783541","https://openalex.org/W4287593139","https://openalex.org/W4206811032","https://openalex.org/W3212757063","https://openalex.org/W3137340192","https://openalex.org/W3099313426","https://openalex.org/W2995605830","https://openalex.org/W2596457687","https://openalex.org/W2086123442","https://openalex.org/W1506547947"],"abstract_inverted_index":{"This":[0],"paper":[1],"presents":[2],"Flex-PIM,":[3],"a":[4,132],"ferroelectric":[5],"FET":[6],"(FeFET)":[7],"based":[8],"processing-in-memory":[9],"(PIM)":[10],"engine":[11,41],"for":[12],"vector-matrix-multiplication":[13],"(VMM).":[14],"With":[15],"FeFET":[16],"as":[17],"the":[18],"basic":[19],"memory":[20,45],"cell,":[21],"Flex-PIM":[22,35,58,110],"features":[23],"low":[24],"read":[25],"latency/programming":[26],"energy,":[27],"non-volatility":[28],"and":[29,53,66,96,117,121],"high":[30,129],"density.":[31],"The":[32,57,105],"core":[33],"of":[34,98,115,134],"micro-architecture":[36],"is":[37,60,91],"an":[38],"all-digital":[39],"VMM":[40],"integrated":[42],"with":[43,87],"innovative":[44],"array":[46],"peripherals":[47],"to":[48,77,93],"realize":[49],"dynamically":[50],"controllable":[51],"bitwidth":[52],"floating":[54,73],"point":[55,74],"precision.":[56,139],"architecture":[59],"simulated":[61],"in":[62],"28nm":[63],"CMOS":[64],"technology":[65],"shows":[67],"multiplication-accumulation":[68],"(MAC)":[69],"operations":[70],"from":[71],"32-bit":[72],"(99":[75],"GMACS/W)":[76],"4":[78],"bit":[79],"fixed-point":[80],"(3.3":[81],"TMACS/W).":[82],"A":[83],"system":[84],"level":[85],"design":[86],"specialized":[88],"instruction":[89],"set":[90],"presented":[92],"acclerate":[94],"training":[95,116],"inference":[97,118],"deep":[99],"neural":[100],"networks":[101],"(DNN)":[102],"using":[103,137],"Flex-PIM.":[104],"full-chip":[106],"simulations":[107],"show":[108],"that":[109],"can":[111],"increase":[112],"computing":[113],"efficiency":[114],"by":[119],"32x":[120],"120x,":[122],"respectively,":[123],"over":[124,131],"desktop":[125],"GPUs":[126],"while":[127],"maintaining":[128],"accuracy":[130],"wide-range":[133],"DNN":[135],"models":[136],"flexible":[138]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3090768765","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":3}],"updated_date":"2025-01-07T15:49:32.118530","created_date":"2020-10-08"}