{"id":"https://openalex.org/W3105825887","doi":"https://doi.org/10.1109/ijcnn.2019.8852242","title":"Heartbeat Anomaly Detection using Adversarial Oversampling","display_name":"Heartbeat Anomaly Detection using Adversarial Oversampling","publication_year":2019,"publication_date":"2019-07-01","ids":{"openalex":"https://openalex.org/W3105825887","doi":"https://doi.org/10.1109/ijcnn.2019.8852242","mag":"3105825887"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2019.8852242","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["arxiv","crossref","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/1901.09972","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5004713935","display_name":"Jefferson L. P. Lima","orcid":null},"institutions":[{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Jefferson L. P. Lima","raw_affiliation_strings":["Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Recife, PE, Brazil"],"affiliations":[{"raw_affiliation_string":"Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Recife, PE, Brazil","institution_ids":["https://openalex.org/I25112270"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021701067","display_name":"David Mac\u00eado","orcid":"https://orcid.org/0000-0002-2527-4548"},"institutions":[{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"David Macedo","raw_affiliation_strings":["Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Recife, PE, Brazil"],"affiliations":[{"raw_affiliation_string":"Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Recife, PE, Brazil","institution_ids":["https://openalex.org/I25112270"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5086345001","display_name":"Cleber Zanchettin","orcid":"https://orcid.org/0000-0001-6421-9747"},"institutions":[{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Cleber Zanchettin","raw_affiliation_strings":["Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Recife, PE, Brazil"],"affiliations":[{"raw_affiliation_string":"Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Recife, PE, Brazil","institution_ids":["https://openalex.org/I25112270"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.727,"has_fulltext":false,"cited_by_count":16,"citation_normalized_percentile":{"value":0.614729,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":89,"max":90},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"7"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9962,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9962,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9923,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11021","display_name":"ECG Monitoring and Analysis","score":0.9896,"subfield":{"id":"https://openalex.org/subfields/2705","display_name":"Cardiology and Cardiovascular Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/oversampling","display_name":"Oversampling","score":0.95982826},{"id":"https://openalex.org/keywords/heartbeat","display_name":"Heart beat","score":0.71457106},{"id":"https://openalex.org/keywords/adversarial-machine-learning","display_name":"Adversarial machine learning","score":0.41141406}],"concepts":[{"id":"https://openalex.org/C197323446","wikidata":"https://www.wikidata.org/wiki/Q331222","display_name":"Oversampling","level":3,"score":0.95982826},{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.7740968},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.752361},{"id":"https://openalex.org/C13852961","wikidata":"https://www.wikidata.org/wiki/Q17021880","display_name":"Heartbeat","level":2,"score":0.71457106},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.6955461},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6539002},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5483752},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.4781695},{"id":"https://openalex.org/C739882","wikidata":"https://www.wikidata.org/wiki/Q3560506","display_name":"Anomaly detection","level":2,"score":0.47375068},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.42937985},{"id":"https://openalex.org/C2778403875","wikidata":"https://www.wikidata.org/wiki/Q20312394","display_name":"Adversarial machine learning","level":3,"score":0.41141406},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3995437},{"id":"https://openalex.org/C2776257435","wikidata":"https://www.wikidata.org/wiki/Q1576430","display_name":"Bandwidth (computing)","level":2,"score":0.17918986},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0901393},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.06823623},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.0},{"id":"https://openalex.org/C201995342","wikidata":"https://www.wikidata.org/wiki/Q682496","display_name":"Systems engineering","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2019.8852242","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1901.09972","pdf_url":"https://arxiv.org/pdf/1901.09972","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.1901.09972","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1901.09972","pdf_url":"https://arxiv.org/pdf/1901.09972","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.63,"id":"https://metadata.un.org/sdg/3","display_name":"Good health and well-being"}],"grants":[],"datasets":[],"versions":["https://openalex.org/W2912559243","https://openalex.org/W3105825887"],"referenced_works_count":30,"referenced_works":["https://openalex.org/W1515857230","https://openalex.org/W1665214252","https://openalex.org/W1677182931","https://openalex.org/W1836465849","https://openalex.org/W1921523184","https://openalex.org/W1965365402","https://openalex.org/W1989249186","https://openalex.org/W2095409369","https://openalex.org/W2095705004","https://openalex.org/W2099471712","https://openalex.org/W2104933073","https://openalex.org/W2148143831","https://openalex.org/W2291961022","https://openalex.org/W2521200999","https://openalex.org/W2554314924","https://openalex.org/W2621205740","https://openalex.org/W2739748921","https://openalex.org/W2770173563","https://openalex.org/W2883609492","https://openalex.org/W2889838428","https://openalex.org/W2891154157","https://openalex.org/W2899434936","https://openalex.org/W2899481677","https://openalex.org/W2963226019","https://openalex.org/W2963942586","https://openalex.org/W3100595047","https://openalex.org/W3145536611","https://openalex.org/W4293320219","https://openalex.org/W4293713156","https://openalex.org/W4320013936"],"related_works":["https://openalex.org/W4384648009","https://openalex.org/W4383468834","https://openalex.org/W4380352238","https://openalex.org/W4287828318","https://openalex.org/W4283221438","https://openalex.org/W3126470649","https://openalex.org/W3048732067","https://openalex.org/W2930249865","https://openalex.org/W2900159906","https://openalex.org/W2406556600"],"abstract_inverted_index":{"Cardiovascular":[0],"diseases":[1],"are":[2,40],"one":[3],"of":[4,9,16,66,77],"the":[5,12,20,26,51,64,67,75,115,128,132,136,141,144],"most":[6,48],"common":[7],"causes":[8],"death":[10],"in":[11,19,47,59,80,143],"world.":[13],"Prevention,":[14],"knowledge":[15],"previous":[17],"cases":[18],"family,":[21],"and":[22,55,62,111,122],"early":[23],"detection":[24],"is":[25,57],"best":[27],"strategy":[28],"to":[29,37,43,102],"reduce":[30],"this":[31,44,60,71,107],"fact.":[32],"Different":[33],"machine":[34],"learning":[35],"approaches":[36],"automatic":[38],"diagnostic":[39],"being":[41],"proposed":[42,129],"task.":[45],"As":[46],"health":[49],"problems,":[50],"imbalance":[52],"between":[53],"examples":[54],"classes":[56,138],"predominant":[58],"problem":[61],"affects":[63],"performance":[65,134,142],"automated":[68],"solution.":[69],"In":[70],"paper,":[72],"we":[73],"address":[74],"classification":[76,92],"heartbeats":[78],"images":[79,101],"different":[81],"cardiovascular":[82],"diseases.":[83],"We":[84,105],"propose":[85],"a":[86,95],"two-dimensional":[87],"Convolutional":[88],"Neural":[89],"Network":[90],"for":[91,98,135],"after":[93],"using":[94],"InfoGAN":[96],"architecture":[97],"generating":[99],"synthetic":[100],"unbalanced":[103],"classes.":[104,146],"call":[106],"proposal":[108],"Adversarial":[109],"Oversampling":[110],"compare":[112],"it":[113],"with":[114],"classical":[116],"oversampling":[117],"methods":[118],"as":[119],"SMOTE,":[120],"ADASYN,":[121],"RandomOversampling.":[123],"The":[124],"results":[125],"show":[126],"that":[127],"approach":[130],"improves":[131],"classifier":[133],"minority":[137],"without":[139],"harming":[140],"balanced":[145]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3105825887","counts_by_year":[{"year":2023,"cited_by_count":5},{"year":2022,"cited_by_count":4},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":6}],"updated_date":"2025-01-18T20:42:49.876086","created_date":"2020-11-23"}