{"id":"https://openalex.org/W2978889617","doi":"https://doi.org/10.1109/ijcnn.2019.8852033","title":"Efficient Learning Rate Adaptation for Convolutional Neural Network Training","display_name":"Efficient Learning Rate Adaptation for Convolutional Neural Network Training","publication_year":2019,"publication_date":"2019-07-01","ids":{"openalex":"https://openalex.org/W2978889617","doi":"https://doi.org/10.1109/ijcnn.2019.8852033","mag":"2978889617"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2019.8852033","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5085640042","display_name":"Spiros V. Georgakopoulos","orcid":"https://orcid.org/0000-0002-3374-0422"},"institutions":[{"id":"https://openalex.org/I145722265","display_name":"University of Thessaly","ror":"https://ror.org/04v4g9h31","country_code":"GR","type":"funder","lineage":["https://openalex.org/I145722265"]}],"countries":["GR"],"is_corresponding":false,"raw_author_name":"Spiros V. Georgakopoulos","raw_affiliation_strings":["Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece","institution_ids":["https://openalex.org/I145722265"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5111235416","display_name":"V.P. Plagianakos","orcid":null},"institutions":[{"id":"https://openalex.org/I145722265","display_name":"University of Thessaly","ror":"https://ror.org/04v4g9h31","country_code":"GR","type":"funder","lineage":["https://openalex.org/I145722265"]}],"countries":["GR"],"is_corresponding":false,"raw_author_name":"Vassilis P. Plagianakos","raw_affiliation_strings":["Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece","institution_ids":["https://openalex.org/I145722265"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.066,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.223342,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":61,"max":69},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"8"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12676","display_name":"Machine Learning and ELM","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8227609},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.65531856},{"id":"https://openalex.org/C139807058","wikidata":"https://www.wikidata.org/wiki/Q352374","display_name":"Adaptation (eye)","level":2,"score":0.6445579},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6156824},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5896047},{"id":"https://openalex.org/C57869625","wikidata":"https://www.wikidata.org/wiki/Q1783502","display_name":"Rate of convergence","level":3,"score":0.501333},{"id":"https://openalex.org/C2777303404","wikidata":"https://www.wikidata.org/wiki/Q759757","display_name":"Convergence (economics)","level":2,"score":0.5004475},{"id":"https://openalex.org/C173801870","wikidata":"https://www.wikidata.org/wiki/Q201413","display_name":"Heuristic","level":2,"score":0.49907732},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.43700844},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.41566676},{"id":"https://openalex.org/C26517878","wikidata":"https://www.wikidata.org/wiki/Q228039","display_name":"Key (lock)","level":2,"score":0.12874919},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C50522688","wikidata":"https://www.wikidata.org/wiki/Q189833","display_name":"Economic growth","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2019.8852033","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":26,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W1536680647","https://openalex.org/W1665214252","https://openalex.org/W1729629352","https://openalex.org/W1952586303","https://openalex.org/W2051641866","https://openalex.org/W2108598243","https://openalex.org/W2112796928","https://openalex.org/W2132211083","https://openalex.org/W2145607950","https://openalex.org/W2146502635","https://openalex.org/W2155893237","https://openalex.org/W2163605009","https://openalex.org/W2194775991","https://openalex.org/W2620841913","https://openalex.org/W2622263826","https://openalex.org/W2740064617","https://openalex.org/W2769856846","https://openalex.org/W2785523195","https://openalex.org/W2789115819","https://openalex.org/W2803469628","https://openalex.org/W2893288610","https://openalex.org/W2963150697","https://openalex.org/W2963748066","https://openalex.org/W2964121744","https://openalex.org/W3159754263"],"related_works":["https://openalex.org/W4375867731","https://openalex.org/W4312417841","https://openalex.org/W4293226380","https://openalex.org/W4226493464","https://openalex.org/W3133861977","https://openalex.org/W3103566983","https://openalex.org/W3029198973","https://openalex.org/W2997567050","https://openalex.org/W2951211570","https://openalex.org/W2611989081"],"abstract_inverted_index":{"Convolutional":[0],"Neural":[1],"Networks":[2],"(CNNs)":[3],"have":[4,24,120],"been":[5,121],"established":[6],"as":[7],"substantial":[8],"supervised":[9],"methods":[10],"for":[11,42,85],"classification":[12,34,155],"problems":[13],"in":[14,108],"many":[15],"research":[16,125],"fields.":[17],"However,":[18],"a":[19,46,67,80],"large":[20],"number":[21,95],"of":[22,37,45,53,83,96,103,134],"parameters":[23],"to":[25,28,61,89,113,115],"be":[26],"tuned":[27],"achieve":[29],"high":[30,94,116],"performance":[31,44],"and":[32,93,119,154,164],"good":[33],"results.":[35],"One":[36],"the":[38,43,49,54,58,63,75,101,104,109,124,135,159],"most":[39],"crucial":[40],"parameter":[41],"CNN":[47],"is":[48,66,71,162],"learning":[50,64,106,145],"rate":[51,65,107,146],"(step)":[52],"training":[55],"algorithm.":[56],"Although":[57],"heuristic":[59],"search":[60],"tune":[62],"common":[68],"practice,":[69],"it":[70],"extremely":[72],"time-consuming,":[73],"considering":[74],"fact":[76],"that":[77,99],"CNNs":[78],"require":[79],"significant":[81],"amount":[82],"time":[84,161],"each":[86],"training,":[87],"due":[88],"their":[90],"complex":[91],"architectures":[92],"weights.":[97],"Approaches":[98],"integrate":[100],"adaptation":[102,147],"initial":[105],"optimization":[110],"algorithm,":[111],"manage":[112],"converge":[114],"quality":[117],"solutions":[118],"embraced":[122],"by":[123],"community.":[126],"In":[127],"this":[128],"work,":[129],"we":[130],"propose":[131],"an":[132],"improvement":[133],"recently":[136],"proposed":[137,144],"Adaptive":[138],"Learning":[139],"Rate":[140],"algorithm":[141,148],"(AdLR).":[142],"The":[143],"(e-AdLR)":[149],"exhibits":[150],"excellent":[151],"convergence":[152],"properties":[153],"accuracy,":[156],"while":[157],"at":[158],"same":[160],"fast":[163],"robust.":[165]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2978889617","counts_by_year":[{"year":2021,"cited_by_count":1}],"updated_date":"2025-04-20T02:18:23.342227","created_date":"2019-10-10"}