{"id":"https://openalex.org/W2978695033","doi":"https://doi.org/10.1109/ijcnn.2019.8851813","title":"A Novel Two-Factor Attention Encoder-Decoder Network through Combining Temporal and Prior Knowledge for Weather Forecasting","display_name":"A Novel Two-Factor Attention Encoder-Decoder Network through Combining Temporal and Prior Knowledge for Weather Forecasting","publication_year":2019,"publication_date":"2019-07-01","ids":{"openalex":"https://openalex.org/W2978695033","doi":"https://doi.org/10.1109/ijcnn.2019.8851813","mag":"2978695033"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2019.8851813","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5075959173","display_name":"Minglei Yuan","orcid":null},"institutions":[{"id":"https://openalex.org/I881766915","display_name":"Nanjing University","ror":"https://ror.org/01rxvg760","country_code":"CN","type":"funder","lineage":["https://openalex.org/I881766915"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Minglei Yuan","raw_affiliation_strings":["National Key Lab for Novel Software Technology, Nanjing University, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"National Key Lab for Novel Software Technology, Nanjing University, Nanjing, China","institution_ids":["https://openalex.org/I881766915"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5055612307","display_name":"Xiaozhong Ji","orcid":null},"institutions":[{"id":"https://openalex.org/I881766915","display_name":"Nanjing University","ror":"https://ror.org/01rxvg760","country_code":"CN","type":"funder","lineage":["https://openalex.org/I881766915"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaozhong Ji","raw_affiliation_strings":["National Key Lab for Novel Software Technology, Nanjing University, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"National Key Lab for Novel Software Technology, Nanjing University, Nanjing, China","institution_ids":["https://openalex.org/I881766915"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5061696740","display_name":"Tong L\u00fc","orcid":"https://orcid.org/0000-0002-7051-5347"},"institutions":[{"id":"https://openalex.org/I881766915","display_name":"Nanjing University","ror":"https://ror.org/01rxvg760","country_code":"CN","type":"funder","lineage":["https://openalex.org/I881766915"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Tong Lu","raw_affiliation_strings":["National Key Lab for Novel Software Technology, Nanjing University, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"National Key Lab for Novel Software Technology, Nanjing University, Nanjing, China","institution_ids":["https://openalex.org/I881766915"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5017830297","display_name":"P. F. Chen","orcid":"https://orcid.org/0000-0002-7289-642X"},"institutions":[{"id":"https://openalex.org/I881766915","display_name":"Nanjing University","ror":"https://ror.org/01rxvg760","country_code":"CN","type":"funder","lineage":["https://openalex.org/I881766915"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Pengfei Chen","raw_affiliation_strings":["National Key Lab for Novel Software Technology, Nanjing University, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"National Key Lab for Novel Software Technology, Nanjing University, Nanjing, China","institution_ids":["https://openalex.org/I881766915"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5036905613","display_name":"Hualu Zhang","orcid":null},"institutions":[{"id":"https://openalex.org/I4210118629","display_name":"NARI Group (China)","ror":"https://ror.org/02egn3136","country_code":"CN","type":"facility","lineage":["https://openalex.org/I4210118629"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hualu Zhang","raw_affiliation_strings":["Information Technology & Communication Company, Nari Group Corporation, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"Information Technology & Communication Company, Nari Group Corporation, Nanjing, China","institution_ids":["https://openalex.org/I4210118629"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.363,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.581359,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":69,"max":74},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"8"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11490","display_name":"Hydrological Forecasting Using AI","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11490","display_name":"Hydrological Forecasting Using AI","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9947,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9834,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/code","display_name":"Code (set theory)","score":0.4500794},{"id":"https://openalex.org/keywords/factor","display_name":"Factor (programming language)","score":0.41805944}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76834893},{"id":"https://openalex.org/C161584116","wikidata":"https://www.wikidata.org/wiki/Q1952580","display_name":"Multivariate statistics","level":2,"score":0.6409827},{"id":"https://openalex.org/C139945424","wikidata":"https://www.wikidata.org/wiki/Q1940696","display_name":"Mean squared error","level":2,"score":0.5534577},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.5316815},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.49856734},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.45471478},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.4527285},{"id":"https://openalex.org/C2776760102","wikidata":"https://www.wikidata.org/wiki/Q5139990","display_name":"Code (set theory)","level":3,"score":0.4500794},{"id":"https://openalex.org/C14036430","wikidata":"https://www.wikidata.org/wiki/Q3736076","display_name":"Function (biology)","level":2,"score":0.41830307},{"id":"https://openalex.org/C2781039887","wikidata":"https://www.wikidata.org/wiki/Q1391724","display_name":"Factor (programming language)","level":2,"score":0.41805944},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.22868645},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0913243},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.0},{"id":"https://openalex.org/C78458016","wikidata":"https://www.wikidata.org/wiki/Q840400","display_name":"Evolutionary biology","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2019.8851813","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.59,"display_name":"Climate action","id":"https://metadata.un.org/sdg/13"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W1753482797","https://openalex.org/W1810943226","https://openalex.org/W2008183828","https://openalex.org/W2016287239","https://openalex.org/W2016589492","https://openalex.org/W2056590306","https://openalex.org/W2101113449","https://openalex.org/W2103452139","https://openalex.org/W2130942839","https://openalex.org/W2133564696","https://openalex.org/W2157331557","https://openalex.org/W2470673105","https://openalex.org/W2560645892","https://openalex.org/W2569758175","https://openalex.org/W2613328025","https://openalex.org/W2952042565","https://openalex.org/W2964121744","https://openalex.org/W2964308564","https://openalex.org/W3122598275","https://openalex.org/W4236706032"],"related_works":["https://openalex.org/W4306674287","https://openalex.org/W4306321456","https://openalex.org/W4286629047","https://openalex.org/W4285260836","https://openalex.org/W4224009465","https://openalex.org/W3046775127","https://openalex.org/W2995227436","https://openalex.org/W2961085424","https://openalex.org/W2385621972","https://openalex.org/W2275988210"],"abstract_inverted_index":{"This":[0],"paper":[1,97],"proposes":[2,98],"a":[3,90,99],"novel":[4],"two-factor":[5,191],"attention":[6,19,130,192],"based":[7],"encoder-decoder":[8],"model":[9,17,131,146],"(TwoFactorEncoderDecoder)":[10],"for":[11,86,102,196],"multivariate":[12,103,125],"weather":[13,56,87,156],"prediction.":[14,104,126],"The":[15],"proposed":[16,114,144],"learns":[18],"weights":[20,59],"from":[21],"two":[22,62],"factors,":[23],"namely,":[24,159],"temporal":[25,33,135],"information":[26,34,48,81,136],"and":[27,74,176],"prior":[28,45,84,139],"knowledge":[29,46,85,140],"inferred":[30,47,82,141],"information.":[31],"Here,":[32],"contains":[35],"change":[36],"patterns":[37],"hidden":[38],"in":[39,55,123,150],"observed":[40],"time":[41],"series":[42],"data,":[43],"while":[44],"gives":[49],"various":[50],"types":[51],"of":[52,60,71,162,170,179,189],"meteorological":[53],"observations":[54],"forecasting.":[57],"Attention":[58],"the":[61,68,72,77,113,129,138,143,154,160,168,177,187,190,197],"factors":[63],"are":[64],"used":[65],"to":[66],"select":[67],"intermediate":[69],"outputs":[70],"encoder,":[73],"then":[75],"combine":[76],"selected":[78],"result":[79],"with":[80,106,128],"by":[83,89,166,174,183],"forecasting":[88,157],"more":[91,121],"effective":[92],"way.":[93],"In":[94],"addition,":[95],"this":[96],"loss":[100,111,115],"function":[101,116],"Compared":[105,127],"Mean":[107],"Square":[108],"Error":[109],"(MSE)":[110],"function,":[112],"can":[117],"fit":[118],"small":[119],"variances":[120],"accurately":[122],"performing":[124],"that":[132],"only":[133],"uses":[134],"or":[137],"information,":[142],"TwoFactorEncoderDecoder":[145],"has":[147],"encouraging":[148],"improvements":[149],"prediction":[151],"accuracy":[152],"on":[153],"public":[155],"dataset,":[158],"MAPE":[161,169,178],"t2m":[163],"is":[164,172,181],"increased":[165,173,182],"5.42%,":[167],"rh2m":[171],"2.92%,":[175],"w2m":[180],"1.67%,":[184],"which":[185],"shows":[186],"effect":[188],"mechanism.":[193],"Source":[194],"code":[195],"complete":[198],"system":[199],"will":[200],"be":[201],"available":[202],"at":[203],"https://github.com/YuanMLer/TFAEncoderDecoder.":[204]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2978695033","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2021,"cited_by_count":1}],"updated_date":"2025-04-18T09:00:57.835115","created_date":"2019-10-10"}