{"id":"https://openalex.org/W2895874045","doi":"https://doi.org/10.1109/ijcnn.2018.8489487","title":"Manifold Correlation Graph for Semi-Supervised Learning","display_name":"Manifold Correlation Graph for Semi-Supervised Learning","publication_year":2018,"publication_date":"2018-07-01","ids":{"openalex":"https://openalex.org/W2895874045","doi":"https://doi.org/10.1109/ijcnn.2018.8489487","mag":"2895874045"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2018.8489487","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5039558288","display_name":"Lucas Pascotti Valem","orcid":"https://orcid.org/0000-0002-3833-9072"},"institutions":[{"id":"https://openalex.org/I879563668","display_name":"Universidade Estadual Paulista (Unesp)","ror":"https://ror.org/00987cb86","country_code":"BR","type":"funder","lineage":["https://openalex.org/I879563668"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Lucas Pascotti Valem","raw_affiliation_strings":["Department of Statistics, S\u00e3o Paulo State University (UNESP), Rio Claro, Brazil"],"affiliations":[{"raw_affiliation_string":"Department of Statistics, S\u00e3o Paulo State University (UNESP), Rio Claro, Brazil","institution_ids":["https://openalex.org/I879563668"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5078511671","display_name":"Daniel Carlos Guimar\u00e3es Pedronette","orcid":"https://orcid.org/0000-0002-2867-4838"},"institutions":[{"id":"https://openalex.org/I879563668","display_name":"Universidade Estadual Paulista (Unesp)","ror":"https://ror.org/00987cb86","country_code":"BR","type":"funder","lineage":["https://openalex.org/I879563668"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Daniel C. G. Pedronette","raw_affiliation_strings":["Department of Statistics, S\u00e3o Paulo State University (UNESP), Rio Claro, Brazil"],"affiliations":[{"raw_affiliation_string":"Department of Statistics, S\u00e3o Paulo State University (UNESP), Rio Claro, Brazil","institution_ids":["https://openalex.org/I879563668"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5034280253","display_name":"Fabr\u00edcio Breve","orcid":"https://orcid.org/0000-0002-1123-9784"},"institutions":[{"id":"https://openalex.org/I879563668","display_name":"Universidade Estadual Paulista (Unesp)","ror":"https://ror.org/00987cb86","country_code":"BR","type":"funder","lineage":["https://openalex.org/I879563668"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Fabricio Breve","raw_affiliation_strings":["Department of Statistics, S\u00e3o Paulo State University (UNESP), Rio Claro, Brazil"],"affiliations":[{"raw_affiliation_string":"Department of Statistics, S\u00e3o Paulo State University (UNESP), Rio Claro, Brazil","institution_ids":["https://openalex.org/I879563668"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5000520762","display_name":"Ivan Rizzo Guilherme","orcid":"https://orcid.org/0000-0002-3610-3779"},"institutions":[{"id":"https://openalex.org/I879563668","display_name":"Universidade Estadual Paulista (Unesp)","ror":"https://ror.org/00987cb86","country_code":"BR","type":"funder","lineage":["https://openalex.org/I879563668"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Ivan Rizzo Guilherme","raw_affiliation_strings":["Department of Statistics, S\u00e3o Paulo State University (UNESP), Rio Claro, Brazil"],"affiliations":[{"raw_affiliation_string":"Department of Statistics, S\u00e3o Paulo State University (UNESP), Rio Claro, Brazil","institution_ids":["https://openalex.org/I879563668"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.211,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":3,"citation_normalized_percentile":{"value":0.351781,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":74,"max":77},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"7"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11550","display_name":"Text and Document Classification Technologies","score":0.9974,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/manifold-alignment","display_name":"Manifold alignment","score":0.51140445},{"id":"https://openalex.org/keywords/labeled-data","display_name":"Labeled data","score":0.5105568},{"id":"https://openalex.org/keywords/supervised-learning","display_name":"Supervised Learning","score":0.44204485},{"id":"https://openalex.org/keywords/relevance","display_name":"Relevance","score":0.43030703},{"id":"https://openalex.org/keywords/similarity-measure","display_name":"Similarity measure","score":0.4163287},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.41120484}],"concepts":[{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.62863696},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6272986},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.5872038},{"id":"https://openalex.org/C117220453","wikidata":"https://www.wikidata.org/wiki/Q5172842","display_name":"Correlation","level":2,"score":0.58674645},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.585575},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.54903764},{"id":"https://openalex.org/C58973888","wikidata":"https://www.wikidata.org/wiki/Q1041418","display_name":"Semi-supervised learning","level":2,"score":0.5243378},{"id":"https://openalex.org/C153120616","wikidata":"https://www.wikidata.org/wiki/Q17068315","display_name":"Manifold alignment","level":4,"score":0.51140445},{"id":"https://openalex.org/C2776145971","wikidata":"https://www.wikidata.org/wiki/Q30673951","display_name":"Labeled data","level":2,"score":0.5105568},{"id":"https://openalex.org/C151876577","wikidata":"https://www.wikidata.org/wiki/Q7049464","display_name":"Nonlinear dimensionality reduction","level":3,"score":0.48270655},{"id":"https://openalex.org/C520049643","wikidata":"https://www.wikidata.org/wiki/Q189760","display_name":"Voting","level":3,"score":0.4720555},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.47193143},{"id":"https://openalex.org/C136389625","wikidata":"https://www.wikidata.org/wiki/Q334384","display_name":"Supervised learning","level":3,"score":0.44204485},{"id":"https://openalex.org/C158154518","wikidata":"https://www.wikidata.org/wiki/Q7310970","display_name":"Relevance (law)","level":2,"score":0.43030703},{"id":"https://openalex.org/C2776517306","wikidata":"https://www.wikidata.org/wiki/Q29017317","display_name":"Similarity measure","level":2,"score":0.4163287},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.41120484},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.28250444},{"id":"https://openalex.org/C70518039","wikidata":"https://www.wikidata.org/wiki/Q16000077","display_name":"Dimensionality reduction","level":2,"score":0.19889995},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.13188773},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.0965929},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2018.8489487","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","display_name":"Quality education","score":0.55}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":37,"referenced_works":["https://openalex.org/W1479807131","https://openalex.org/W1491300635","https://openalex.org/W1497443639","https://openalex.org/W1585385982","https://openalex.org/W1630959083","https://openalex.org/W1704419048","https://openalex.org/W1969198379","https://openalex.org/W1984701370","https://openalex.org/W2071864906","https://openalex.org/W2083412275","https://openalex.org/W2097308346","https://openalex.org/W2109405055","https://openalex.org/W2111557120","https://openalex.org/W2113592823","https://openalex.org/W2118382442","https://openalex.org/W2126491576","https://openalex.org/W2136504847","https://openalex.org/W2148029428","https://openalex.org/W2150627493","https://openalex.org/W2154455818","https://openalex.org/W2156909104","https://openalex.org/W2159101365","https://openalex.org/W2242818826","https://openalex.org/W2345891614","https://openalex.org/W2398616336","https://openalex.org/W2411700280","https://openalex.org/W2469411514","https://openalex.org/W2553312496","https://openalex.org/W2559091987","https://openalex.org/W2576489887","https://openalex.org/W2592295811","https://openalex.org/W2613503760","https://openalex.org/W3013880646","https://openalex.org/W3123825806","https://openalex.org/W4245973528","https://openalex.org/W4384306342","https://openalex.org/W92894758"],"related_works":["https://openalex.org/W3109610583","https://openalex.org/W3000568127","https://openalex.org/W2944373987","https://openalex.org/W2391701611","https://openalex.org/W2387045723","https://openalex.org/W2375518579","https://openalex.org/W2149544245","https://openalex.org/W2112684860","https://openalex.org/W1600770633","https://openalex.org/W117517268"],"abstract_inverted_index":{"Due":[0],"to":[1,83],"the":[2,9,15,31,41,85],"growing":[3],"availability":[4],"of":[5,17,27,35,114,130],"unlabeled":[6,42],"data":[7],"and":[8,72,81,100,118],"difficulties":[10],"in":[11,128],"obtaining":[12],"labeled":[13],"data,":[14],"use":[16],"semi-supervised":[18],"learning":[19,55],"approaches":[20],"becomes":[21],"even":[22],"more":[23],"promising.":[24],"The":[25,57,88,122],"capacity":[26],"taking":[28],"into":[29],"account":[30],"dataset":[32,86,116],"structure":[33],"is":[34,50,59,90,107],"crucial":[36],"relevance":[37],"for":[38],"effectively":[39],"considering":[40,109],"data.":[43],"In":[44],"this":[45],"paper,":[46],"a":[47,53,63,93],"novel":[48],"classifier":[49],"proposed":[51,123],"through":[52,92],"manifold":[54],"approach.":[56],"graph":[58],"constructed":[60],"based":[61,96],"on":[62,97],"new":[64],"hybrid":[65],"similarity":[66],"measure":[67],"which":[68],"encodes":[69],"both":[70],"supervised":[71],"unsupervised":[73],"information.":[74],"Next,":[75],"strongly":[76],"connected":[77],"components":[78],"are":[79],"computed":[80],"used":[82],"analyze":[84],"manifold.":[87],"classification":[89],"performed":[91],"voting":[94],"scheme":[95],"primary":[98],"(labeled)":[99],"secondary":[101],"(unlabeled)":[102],"voters.":[103],"An":[104],"experimental":[105],"evaluation":[106],"conducted,":[108],"various":[110],"datasets,":[111],"diverse":[112],"situations":[113],"training/test":[115],"sizes":[117],"comparison":[119],"with":[120],"baselines.":[121],"method":[124],"achieved":[125],"positive":[126],"results":[127],"most":[129],"situations.":[131]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2895874045","counts_by_year":[{"year":2020,"cited_by_count":2},{"year":2019,"cited_by_count":1}],"updated_date":"2025-04-16T06:33:34.970552","created_date":"2018-10-26"}