{"id":"https://openalex.org/W2898018479","doi":"https://doi.org/10.1109/ijcnn.2018.8489442","title":"Reducing SqueezeNet Storage Size with Depthwise Separable Convolutions","display_name":"Reducing SqueezeNet Storage Size with Depthwise Separable Convolutions","publication_year":2018,"publication_date":"2018-07-01","ids":{"openalex":"https://openalex.org/W2898018479","doi":"https://doi.org/10.1109/ijcnn.2018.8489442","mag":"2898018479"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2018.8489442","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5074175570","display_name":"Aline Gondim Santos","orcid":null},"institutions":[{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Aline Gondim Santos","raw_affiliation_strings":["Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Recife, PE, Brazil"],"affiliations":[{"raw_affiliation_string":"Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Recife, PE, Brazil","institution_ids":["https://openalex.org/I25112270"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102396020","display_name":"Camila Oliveira de Souza","orcid":null},"institutions":[{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Camila Oliveira de Souza","raw_affiliation_strings":["Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Recife, PE, Brazil"],"affiliations":[{"raw_affiliation_string":"Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Recife, PE, Brazil","institution_ids":["https://openalex.org/I25112270"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5086345001","display_name":"Cleber Zanchettin","orcid":"https://orcid.org/0000-0001-6421-9747"},"institutions":[{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Cleber Zanchettin","raw_affiliation_strings":["Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Recife, PE, Brazil"],"affiliations":[{"raw_affiliation_string":"Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Recife, PE, Brazil","institution_ids":["https://openalex.org/I25112270"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021701067","display_name":"David Mac\u00eado","orcid":"https://orcid.org/0000-0002-2527-4548"},"institutions":[{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"David Macedo","raw_affiliation_strings":["Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Recife, PE, Brazil"],"affiliations":[{"raw_affiliation_string":"Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Recife, PE, Brazil","institution_ids":["https://openalex.org/I25112270"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100615438","display_name":"Adriano L. I. Oliveira","orcid":"https://orcid.org/0000-0002-5614-229X"},"institutions":[{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Adriano L. I. Oliveira","raw_affiliation_strings":["Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Recife, PE, Brazil"],"affiliations":[{"raw_affiliation_string":"Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Recife, PE, Brazil","institution_ids":["https://openalex.org/I25112270"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5025550530","display_name":"Teresa B. Ludermir","orcid":"https://orcid.org/0000-0002-8980-6742"},"institutions":[{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Teresa Ludermir","raw_affiliation_strings":["Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Recife, PE, Brazil"],"affiliations":[{"raw_affiliation_string":"Centro de Inform\u00e1tica, Universidade Federal de Pernambuco, Recife, PE, Brazil","institution_ids":["https://openalex.org/I25112270"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.493,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":13,"citation_normalized_percentile":{"value":0.795695,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":87,"max":88},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.69573545},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6444395},{"id":"https://openalex.org/C111335779","wikidata":"https://www.wikidata.org/wiki/Q3454686","display_name":"Reduction (mathematics)","level":2,"score":0.5726663},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.47735074},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.47435984},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.39288878},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3332578},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.22024205},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.12199327}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2018.8489442","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.64,"id":"https://metadata.un.org/sdg/7","display_name":"Affordable and clean energy"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W1686810756","https://openalex.org/W1724438581","https://openalex.org/W2097117768","https://openalex.org/W2108598243","https://openalex.org/W2119144962","https://openalex.org/W2163605009","https://openalex.org/W2167383966","https://openalex.org/W2168231600","https://openalex.org/W2194775991","https://openalex.org/W2279098554","https://openalex.org/W2531409750","https://openalex.org/W2540404261","https://openalex.org/W2612445135","https://openalex.org/W2953333557","https://openalex.org/W2963125010","https://openalex.org/W2964299589","https://openalex.org/W3118608800","https://openalex.org/W4297775537","https://openalex.org/W4301368689"],"related_works":["https://openalex.org/W4313906399","https://openalex.org/W4293226380","https://openalex.org/W2544423928","https://openalex.org/W2352590024","https://openalex.org/W2181743346","https://openalex.org/W2073681303","https://openalex.org/W2055243143","https://openalex.org/W2053286651","https://openalex.org/W2052122378","https://openalex.org/W2051487156"],"abstract_inverted_index":{"Current":[0],"research":[1],"in":[2,34,133,138,142],"the":[3,17,28,51,86,92,97,125],"field":[4],"of":[5,16,30,99,107,127,136],"convolutional":[6,77],"neural":[7,78],"networks":[8,79],"usually":[9],"focuses":[10],"on":[11,112],"improving":[12],"network":[13,18,134],"accuracy,":[14,96],"regardless":[15],"size":[19,103,122,126],"and":[20,85,104,114,140],"inference":[21,40],"time.":[22],"In":[23,47],"this":[24],"paper,":[25],"we":[26,54,94],"investigate":[27],"effects":[29],"storage":[31,52,102],"space":[32],"reduction":[33,123],"SqueezeNet":[35,88],"as":[36,71,81],"it":[37],"relates":[38],"to":[39,49,60,70,75],"time":[41,106],"when":[42],"processing":[43,105],"single":[44,109],"test":[45,110],"samples.":[46],"order":[48],"reduce":[50],"space,":[53],"suggest":[55],"adjusting":[56],"SqueezeNet's":[57],"Fire":[58],"Modules":[59],"include":[61],"Depthwise":[62],"Separable":[63],"Convolutions":[64],"(DSC).":[65],"The":[66,117],"resulting":[67],"network,":[68],"referred":[69],"SqueezeNet-DSC,":[72],"is":[73],"compared":[74],"different":[76],"such":[80],"MobileNet,":[82],"AlexNet,":[83],"VGG19,":[84],"original":[87],"itself.":[89],"When":[90],"analyzing":[91],"models,":[93],"consider":[95],"number":[98],"parameters,":[100],"parameter":[101],"a":[108,120,131],"sample":[111],"CIFAR-10":[113,139],"CIFAR-100":[115],"databases.":[116],"SqueezeNet-DSC":[118],"exhibited":[119],"considerable":[121],"(37%":[124],"SqueezeNet),":[128],"while":[129],"experiencing":[130],"loss":[132],"accuracy":[135],"1,07%":[137],"3,06%":[141],"top":[143],"1":[144],"CIFAR-100.":[145]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2898018479","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":4},{"year":2021,"cited_by_count":3},{"year":2020,"cited_by_count":2},{"year":2019,"cited_by_count":2}],"updated_date":"2025-01-22T19:07:48.187222","created_date":"2018-10-26"}