{"id":"https://openalex.org/W2896722540","doi":"https://doi.org/10.1109/ijcnn.2018.8489319","title":"Design of Novel Deep Learning Models for Real-time Human Activity Recognition with Mobile Phones","display_name":"Design of Novel Deep Learning Models for Real-time Human Activity Recognition with Mobile Phones","publication_year":2018,"publication_date":"2018-07-01","ids":{"openalex":"https://openalex.org/W2896722540","doi":"https://doi.org/10.1109/ijcnn.2018.8489319","mag":"2896722540"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2018.8489319","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5049816420","display_name":"Mark Nutter","orcid":"https://orcid.org/0009-0006-1129-5053"},"institutions":[{"id":"https://openalex.org/I4210156213","display_name":"American Rock Mechanics Association","ror":"https://ror.org/05vfrxy92","country_code":"US","type":"nonprofit","lineage":["https://openalex.org/I4210156213"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Mark Nutter","raw_affiliation_strings":["ARM Research, Austin, TX"],"affiliations":[{"raw_affiliation_string":"ARM Research, Austin, TX","institution_ids":["https://openalex.org/I4210156213"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5085993185","display_name":"Catherine H. Crawford","orcid":null},"institutions":[{"id":"https://openalex.org/I4210087032","display_name":"Cambridge Scientific (United States)","ror":"https://ror.org/001s4dh65","country_code":"US","type":"company","lineage":["https://openalex.org/I4210087032"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Catherine H. Crawford","raw_affiliation_strings":["IBM Research, Cambridge, MA"],"affiliations":[{"raw_affiliation_string":"IBM Research, Cambridge, MA","institution_ids":["https://openalex.org/I4210087032"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5035267416","display_name":"Jorge Ortiz","orcid":"https://orcid.org/0000-0003-3325-1298"},"institutions":[{"id":"https://openalex.org/I1341412227","display_name":"IBM (United States)","ror":"https://ror.org/05hh8d621","country_code":"US","type":"company","lineage":["https://openalex.org/I1341412227"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jorge Ortiz","raw_affiliation_strings":["IBM Research, Yorktown Heights, NY"],"affiliations":[{"raw_affiliation_string":"IBM Research, Yorktown Heights, NY","institution_ids":["https://openalex.org/I1341412227"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.78,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":19,"citation_normalized_percentile":{"value":0.757863,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":90,"max":91},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"8"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9953,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10444","display_name":"Context-Aware Activity Recognition Systems","score":0.9953,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11196","display_name":"Non-Invasive Vital Sign Monitoring","score":0.9884,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10326","display_name":"Indoor and Outdoor Localization Technologies","score":0.9783,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/activity-recognition","display_name":"Activity Recognition","score":0.61729544}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8057246},{"id":"https://openalex.org/C79061980","wikidata":"https://www.wikidata.org/wiki/Q941680","display_name":"Inertial measurement unit","level":2,"score":0.777987},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.73207325},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.64643335},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.64633393},{"id":"https://openalex.org/C121687571","wikidata":"https://www.wikidata.org/wiki/Q4677630","display_name":"Activity recognition","level":2,"score":0.61729544},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.59612185},{"id":"https://openalex.org/C43521106","wikidata":"https://www.wikidata.org/wiki/Q2165493","display_name":"Pipeline (software)","level":2,"score":0.5947524},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.46461666},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.46079737},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.4523006},{"id":"https://openalex.org/C186967261","wikidata":"https://www.wikidata.org/wiki/Q5082128","display_name":"Mobile device","level":2,"score":0.43556082},{"id":"https://openalex.org/C2779960059","wikidata":"https://www.wikidata.org/wiki/Q7113681","display_name":"Overhead (engineering)","level":2,"score":0.42363453},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2018.8489319","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":27,"referenced_works":["https://openalex.org/W134960717","https://openalex.org/W1518672027","https://openalex.org/W2012557818","https://openalex.org/W2044059866","https://openalex.org/W2065898880","https://openalex.org/W2071803950","https://openalex.org/W2095705004","https://openalex.org/W2149933564","https://openalex.org/W2161381512","https://openalex.org/W2183341477","https://openalex.org/W2253429366","https://openalex.org/W2282821441","https://openalex.org/W2344284192","https://openalex.org/W2403939351","https://openalex.org/W255708204","https://openalex.org/W2612445135","https://openalex.org/W2735263571","https://openalex.org/W2751594996","https://openalex.org/W2909224716","https://openalex.org/W2949117887","https://openalex.org/W2954131332","https://openalex.org/W2962882167","https://openalex.org/W2963173190","https://openalex.org/W2963214104","https://openalex.org/W2964299589","https://openalex.org/W3098357269","https://openalex.org/W4241021229"],"related_works":["https://openalex.org/W9839718","https://openalex.org/W4287122200","https://openalex.org/W3166845860","https://openalex.org/W3110613631","https://openalex.org/W3016838864","https://openalex.org/W2766841671","https://openalex.org/W2742744817","https://openalex.org/W2225378543","https://openalex.org/W2091018038","https://openalex.org/W2040913503"],"abstract_inverted_index":{"In":[0,176],"this":[1],"paper":[2],"we":[3,178,196,252,278,412],"present":[4,116],"deep":[5,98,416],"learning":[6,99,201,339,417],"based":[7,85],"techniques":[8],"for":[9,69,112,126,371,398,433,442],"human":[10,71],"activity":[11],"classification":[12,67,273,375],"that":[13,50,129,157,171,180,239,287,360,386,414,424],"are":[14],"designed":[15],"to":[16,37,64,103,189,348,380,394,407],"run":[17,38],"in":[18,35,244,249,327],"real":[19],"time":[20,343],"on":[21,39,86],"mobile":[22,59,372,408],"devices.":[23,114],"Our":[24,214],"methods":[25],"minimize":[26],"the":[27,30,40,51,121,158,173,190,242,245,250,272,291,310,313,321,324,342],"size":[28,311],"of":[29,120,131,138,149,160,192,199,211,275,312,337,431,437],"model":[31],"and":[32,43,93,147,228,232,247,266,293,319,356,374],"computational":[33,268],"overhead":[34],"order":[36],"embedded":[41],"processor":[42],"preserve":[44],"battery":[45],"life.":[46],"Prior":[47],"work":[48],"shows":[49],"inertial":[52],"measurement":[53],"unit":[54],"(IMU)":[55],"data":[56],"from":[57,91,183,208,378,427],"waist-mounted":[58],"phones":[60],"can":[61,162,253,388,439],"be":[62,163,365,389,420,440],"used":[63,125,441],"develop":[65],"accurate":[66],"models":[68,81,128,418],"various":[70],"activities":[72,401,438],"such":[73,423],"as":[74,446],"walking,":[75],"running,":[76],"stair-climbing,":[77],"etc.":[78],"However,":[79],"these":[80,193,415],"have":[82,108],"largely":[83],"been":[84,101,110],"hand":[87,315],"crafted":[88,316],"features":[89,124,161,170,181],"derived":[90,182],"temporal":[92],"spectral":[94],"statistics.":[95],"More":[96],"recently,":[97],"has":[100],"applied":[102],"IMU":[104,212],"sensor":[105],"data,":[106],"but":[107,259],"not":[109,187],"optimized":[111],"resourceconstrained":[113],"We":[115,140,237,331,358],"a":[117,132,150,217,233,261,280,334,390,428,434,443],"detailed":[118],"study":[119],"traditional":[122],"hand-crafted":[123],"shallow/statistical":[127],"consist":[130],"over":[133],"561":[134],"manually":[135],"chosen":[136],"set":[137,306,318,430,436],"dimensions.":[139],"show,":[141],"through":[142],"principal":[143],"component":[144],"analysis":[145],"(PCA)":[146],"application":[148,336],"published":[151],"support":[152,283],"vector":[153,284],"machine":[154,285],"(SVM)":[155,286],"pipeline,":[156],"number":[159],"significantly":[164],"reduced":[165],"-":[166],"less":[167],"than":[168],"100":[169],"give":[172],"same":[174],"performance.":[175],"addition,":[177],"show":[179,238,413],"frequency-domain":[184],"transformations":[185],"do":[186],"contribute":[188],"accuracy":[191,274,376],"models.":[194],"Finally,":[195,411],"provide":[197],"details":[198],"our":[200,276],"technique":[202],"which":[203],"creates":[204],"2D":[205,345],"signal":[206,346],"images":[207,347],"windowed":[209],"samples":[210],"data.":[213],"pipeline":[215,246,277],"includes":[216],"convolutional":[218,226,295],"neural":[219],"network":[220],"(CNN)":[221],"with":[222,260,323],"several":[223],"layers":[224,248],"(1":[225],"layer":[227,231,296],"1":[229],"averaging":[230],"fully":[234],"connected":[235],"layer).":[236],"by":[240,340],"removing":[241],"steps":[243],"CNN,":[251],"still":[254],"achieve":[255],"0.98":[256],"F1":[257,329],"score":[258],"much":[262],"smaller":[263],"memory":[264],"footprint":[265],"corresponding":[267],"cost.":[269],"To":[270],"increase":[271],"added":[279],"hybrid":[281],"bi-class":[282],"was":[288,301],"trained":[289],"using":[290,341],"labeled":[292],"flattened":[294],"after":[297],"each":[298],"training":[299],"image":[300],"processed.":[302],"The":[303],"learned":[304],"feature":[305,317],"is":[307],"almost":[308],"half":[309],"original":[314],"combining":[320],"CNN":[322],"SVM":[325],"results":[326],"0.99":[328],"score.":[330],"also":[332,404],"investigate":[333],"novel":[335],"transfer":[338],"series":[344],"re-train":[349],"two":[350],"different":[351],"publicly":[352],"available":[353],"networks,":[354],"Inception/ImageNet":[355],"MobileNet.":[357],"find":[359],"re-trained":[361],"ImageNet":[362],"networks":[363],"could":[364],"created":[366],"$<;":[367],"5.5$":[368],"MB":[369],"(suitable":[370],"phones)":[373],"ranging":[377],"0.83":[379],"0.93":[381],"(F1":[382],"score),":[383],"thus":[384],"indicating":[385],"retraining":[387],"useful":[391],"future":[392],"direction":[393],"build":[395],"new":[396,444],"classifiers":[397,425],"continuously":[399],"evolving":[400],"quickly":[402],"while":[403],"being":[405],"applicable":[406],"device":[409],"classification.":[410],"may":[419],"generalizable":[421],"enough":[422],"built":[426],"given":[429],"users":[432],"specified":[435],"user/subject":[445],"well.":[447]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2896722540","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":8},{"year":2020,"cited_by_count":3}],"updated_date":"2025-01-06T07:45:40.283264","created_date":"2018-10-26"}