{"id":"https://openalex.org/W2735691965","doi":"https://doi.org/10.1109/ijcnn.2017.7966367","title":"Pedestrian detection with dilated convolution, region proposal network and boosted decision trees","display_name":"Pedestrian detection with dilated convolution, region proposal network and boosted decision trees","publication_year":2017,"publication_date":"2017-05-01","ids":{"openalex":"https://openalex.org/W2735691965","doi":"https://doi.org/10.1109/ijcnn.2017.7966367","mag":"2735691965"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2017.7966367","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5083518214","display_name":"Jiqian Li","orcid":null},"institutions":[{"id":"https://openalex.org/I116953780","display_name":"Tongji University","ror":"https://ror.org/03rc6as71","country_code":"CN","type":"education","lineage":["https://openalex.org/I116953780"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jiqian Li","raw_affiliation_strings":["College of Electronics & Information Engineering, Tongji University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"College of Electronics & Information Engineering, Tongji University, Shanghai, China","institution_ids":["https://openalex.org/I116953780"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5070702602","display_name":"Yan Wu","orcid":"https://orcid.org/0000-0002-8874-8886"},"institutions":[{"id":"https://openalex.org/I116953780","display_name":"Tongji University","ror":"https://ror.org/03rc6as71","country_code":"CN","type":"education","lineage":["https://openalex.org/I116953780"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yan Wu","raw_affiliation_strings":["College of Electronics & Information Engineering, Tongji University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"College of Electronics & Information Engineering, Tongji University, Shanghai, China","institution_ids":["https://openalex.org/I116953780"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5007977858","display_name":"Junqiao Zhao","orcid":"https://orcid.org/0000-0002-7864-3255"},"institutions":[{"id":"https://openalex.org/I116953780","display_name":"Tongji University","ror":"https://ror.org/03rc6as71","country_code":"CN","type":"education","lineage":["https://openalex.org/I116953780"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Junqiao Zhao","raw_affiliation_strings":["College of Electronics & Information Engineering, Tongji University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"College of Electronics & Information Engineering, Tongji University, Shanghai, China","institution_ids":["https://openalex.org/I116953780"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5004021334","display_name":"Linting Guan","orcid":"https://orcid.org/0000-0003-2829-0604"},"institutions":[{"id":"https://openalex.org/I116953780","display_name":"Tongji University","ror":"https://ror.org/03rc6as71","country_code":"CN","type":"education","lineage":["https://openalex.org/I116953780"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Linting Guan","raw_affiliation_strings":["College of Electronics & Information Engineering, Tongji University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"College of Electronics & Information Engineering, Tongji University, Shanghai, China","institution_ids":["https://openalex.org/I116953780"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100396642","display_name":"Chen Ye","orcid":"https://orcid.org/0000-0002-0048-6974"},"institutions":[{"id":"https://openalex.org/I116953780","display_name":"Tongji University","ror":"https://ror.org/03rc6as71","country_code":"CN","type":"education","lineage":["https://openalex.org/I116953780"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chen Ye","raw_affiliation_strings":["College of Electronics & Information Engineering, Tongji University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"College of Electronics & Information Engineering, Tongji University, Shanghai, China","institution_ids":["https://openalex.org/I116953780"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101626596","display_name":"Tao Yang","orcid":null},"institutions":[{"id":"https://openalex.org/I116953780","display_name":"Tongji University","ror":"https://ror.org/03rc6as71","country_code":"CN","type":"education","lineage":["https://openalex.org/I116953780"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Tao Yang","raw_affiliation_strings":["College of Electronics & Information Engineering, Tongji University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"College of Electronics & Information Engineering, Tongji University, Shanghai, China","institution_ids":["https://openalex.org/I116953780"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.966,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":25,"citation_normalized_percentile":{"value":0.883565,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":92,"max":93},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11099","display_name":"Autonomous Vehicle Technology and Safety","score":0.9962,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/pedestrian-detection","display_name":"Pedestrian detection","score":0.7518669},{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.66270375},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.53785574},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.5354175},{"id":"https://openalex.org/keywords/dilation","display_name":"Dilation (metric space)","score":0.51695746}],"concepts":[{"id":"https://openalex.org/C2780156472","wikidata":"https://www.wikidata.org/wiki/Q2355550","display_name":"Pedestrian detection","level":3,"score":0.7518669},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.74443066},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.74011856},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7136507},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.66270375},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.6226666},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.53785574},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.5354175},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5280648},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.51934683},{"id":"https://openalex.org/C2780757906","wikidata":"https://www.wikidata.org/wiki/Q5276676","display_name":"Dilation (metric space)","level":2,"score":0.51695746},{"id":"https://openalex.org/C2777113093","wikidata":"https://www.wikidata.org/wiki/Q221488","display_name":"Pedestrian","level":2,"score":0.4988563},{"id":"https://openalex.org/C94915269","wikidata":"https://www.wikidata.org/wiki/Q1834857","display_name":"Detector","level":2,"score":0.49684766},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.48424694},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.45111918},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.13743916},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.12990159},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.123370886},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.10430977},{"id":"https://openalex.org/C22212356","wikidata":"https://www.wikidata.org/wiki/Q775325","display_name":"Transport engineering","level":1,"score":0.0},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2017.7966367","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Sustainable cities and communities","id":"https://metadata.un.org/sdg/11","score":0.64}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":36,"referenced_works":["https://openalex.org/W1475617732","https://openalex.org/W1536680647","https://openalex.org/W1650122911","https://openalex.org/W1686810756","https://openalex.org/W1813659000","https://openalex.org/W1903029394","https://openalex.org/W1972515067","https://openalex.org/W2024046085","https://openalex.org/W2031454541","https://openalex.org/W2097117768","https://openalex.org/W2100495367","https://openalex.org/W2102605133","https://openalex.org/W2109255472","https://openalex.org/W2112796928","https://openalex.org/W2113606819","https://openalex.org/W2113855951","https://openalex.org/W2117539524","https://openalex.org/W2120419212","https://openalex.org/W2136922672","https://openalex.org/W2139479830","https://openalex.org/W2161969291","https://openalex.org/W2163352848","https://openalex.org/W2163605009","https://openalex.org/W2179352600","https://openalex.org/W2194775991","https://openalex.org/W2200528286","https://openalex.org/W2206858481","https://openalex.org/W2340897893","https://openalex.org/W2490270993","https://openalex.org/W2497039038","https://openalex.org/W2613718673","https://openalex.org/W2953106684","https://openalex.org/W2962835968","https://openalex.org/W2962992847","https://openalex.org/W2963840672","https://openalex.org/W345900524"],"related_works":["https://openalex.org/W4313315626","https://openalex.org/W4298149443","https://openalex.org/W4287548622","https://openalex.org/W3173347409","https://openalex.org/W3117849209","https://openalex.org/W2981141433","https://openalex.org/W2972620127","https://openalex.org/W2802018156","https://openalex.org/W2139561767","https://openalex.org/W2101531944"],"abstract_inverted_index":{"With":[0],"the":[1,42,60,64,78,98,113,136,142,148,152,158,166,175,186],"rapid":[2],"development":[3],"of":[4,14,44,67,87,138],"driverless":[5],"cars,":[6],"pedestrian":[7,32,57,68,73],"detection":[8,74,184],"has":[9,49,192],"been":[10,50],"a":[11,72],"canonical":[12],"instance":[13],"object":[15],"detection.":[16],"Although":[17],"recent":[18],"deep":[19,55],"learning":[20,56,66],"detectors":[21],"such":[22],"as":[23,95],"RPN+BF":[24],"and":[25,41,82,110,168],"MS-CNN":[26],"have":[27,35],"shown":[28],"excellent":[29],"performance":[30],"for":[31,38],"detection,":[33,69],"they":[34],"limited":[36],"success":[37],"detecting":[39],"pedestrian,":[40],"importance":[43],"final":[45,149],"feature":[46,65,117],"receptive":[47,131],"field":[48,132],"awared":[51],"by":[52],"previous":[53],"leading":[54],"detectors.":[58],"Applying":[59],"dilated":[61,115,143,190],"convolution":[62,116,191],"to":[63,107,122,146,157,162],"we":[70,134],"constructed":[71],"framework":[75,90,188],"along":[76],"with":[77,101,141,181,189],"region":[79],"proposal":[80],"network":[81],"boosted":[83,159],"decision":[84,160],"trees.":[85],"Pipeline":[86],"our":[88,172],"proposed":[89,187],"can":[91],"be":[92,163],"briefly":[93],"generalized":[94],"follows:":[96],"firstly,":[97],"fine-tuned":[99],"RPN":[100],"specified":[102],"aspect":[103],"ratio":[104],"is":[105,120],"used":[106,121],"get":[108,123,147],"boxes":[109,154],"scores.":[111],"Secondly,":[112],"designed":[114],"extraction":[118],"model":[119],"features.":[124,150,169],"As":[125],"different":[126,130,139],"dilation":[127],"factors":[128],"provide":[129],"scales,":[133],"concat":[135],"features":[137,145],"layers":[140],"convolutional":[144],"Finally,":[151],"candidate":[153],"are":[155],"sent":[156],"trees":[161],"classified":[164],"using":[165],"scores":[167],"We":[170],"evaluated":[171],"method":[173],"on":[174],"Caltech":[176],"Pedestrian":[177],"Detection":[178],"Benchmark.":[179],"Comparing":[180],"other":[182],"state-of-the-art":[183],"methods,":[185],"better":[193],"performance.":[194]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2735691965","counts_by_year":[{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":5},{"year":2020,"cited_by_count":6},{"year":2019,"cited_by_count":2},{"year":2018,"cited_by_count":7},{"year":2017,"cited_by_count":1}],"updated_date":"2025-01-04T11:42:04.753566","created_date":"2017-07-21"}