{"id":"https://openalex.org/W2734871728","doi":"https://doi.org/10.1109/ijcnn.2017.7966017","title":"Mining E-commercial data: A text-rich heterogeneous network embedding approach","display_name":"Mining E-commercial data: A text-rich heterogeneous network embedding approach","publication_year":2017,"publication_date":"2017-05-01","ids":{"openalex":"https://openalex.org/W2734871728","doi":"https://doi.org/10.1109/ijcnn.2017.7966017","mag":"2734871728"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2017.7966017","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5074574183","display_name":"Weizheng Chen","orcid":"https://orcid.org/0000-0002-3433-0783"},"institutions":[{"id":"https://openalex.org/I20231570","display_name":"Peking University","ror":"https://ror.org/02v51f717","country_code":"CN","type":"education","lineage":["https://openalex.org/I20231570"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Weizheng Chen","raw_affiliation_strings":["Peking University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Peking University, Beijing, China","institution_ids":["https://openalex.org/I20231570"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100705183","display_name":"Chi Liu","orcid":"https://orcid.org/0000-0002-6428-5514"},"institutions":[{"id":"https://openalex.org/I20231570","display_name":"Peking University","ror":"https://ror.org/02v51f717","country_code":"CN","type":"education","lineage":["https://openalex.org/I20231570"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chi Liu","raw_affiliation_strings":["Peking University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Peking University, Beijing, China","institution_ids":["https://openalex.org/I20231570"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100606500","display_name":"Jun Yin","orcid":"https://orcid.org/0000-0002-8993-3178"},"institutions":[{"id":"https://openalex.org/I20231570","display_name":"Peking University","ror":"https://ror.org/02v51f717","country_code":"CN","type":"education","lineage":["https://openalex.org/I20231570"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jun Yin","raw_affiliation_strings":["Peking University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Peking University, Beijing, China","institution_ids":["https://openalex.org/I20231570"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5111726041","display_name":"Hongfei Yan","orcid":"https://orcid.org/0000-0001-5914-8585"},"institutions":[{"id":"https://openalex.org/I20231570","display_name":"Peking University","ror":"https://ror.org/02v51f717","country_code":"CN","type":"education","lineage":["https://openalex.org/I20231570"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hongfei Yan","raw_affiliation_strings":["Peking University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Peking University, Beijing, China","institution_ids":["https://openalex.org/I20231570"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100767627","display_name":"Yan Zhang","orcid":"https://orcid.org/0000-0003-2216-5749"},"institutions":[{"id":"https://openalex.org/I20231570","display_name":"Peking University","ror":"https://ror.org/02v51f717","country_code":"CN","type":"education","lineage":["https://openalex.org/I20231570"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yan Zhang","raw_affiliation_strings":["Peking University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Peking University, Beijing, China","institution_ids":["https://openalex.org/I20231570"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.9,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":8,"citation_normalized_percentile":{"value":0.743354,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":83,"max":84},"biblio":{"volume":null,"issue":null,"first_page":"1403","last_page":"1410"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10203","display_name":"Recommender Systems and Techniques","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10203","display_name":"Recommender Systems and Techniques","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9972,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10064","display_name":"Complex Network Analysis Techniques","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.68233275},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.5644279},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.37047225},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3056854}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2017.7966017","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","score":0.42,"display_name":"Industry, innovation and infrastructure"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":28,"referenced_works":["https://openalex.org/W114517082","https://openalex.org/W1498436455","https://openalex.org/W1532325895","https://openalex.org/W1569512666","https://openalex.org/W1614298861","https://openalex.org/W1880262756","https://openalex.org/W1888005072","https://openalex.org/W2101234009","https://openalex.org/W2107743791","https://openalex.org/W2120861206","https://openalex.org/W2131462252","https://openalex.org/W2138204974","https://openalex.org/W2153579005","https://openalex.org/W2158997610","https://openalex.org/W2250460709","https://openalex.org/W2798909945","https://openalex.org/W2950577311","https://openalex.org/W3099514962","https://openalex.org/W3099726625","https://openalex.org/W3100107595","https://openalex.org/W3104097132","https://openalex.org/W3105705953","https://openalex.org/W36903255","https://openalex.org/W4213009331","https://openalex.org/W4233135949","https://openalex.org/W4250857377","https://openalex.org/W4294170691","https://openalex.org/W4301213493"],"related_works":["https://openalex.org/W4391913857","https://openalex.org/W2748952813","https://openalex.org/W2478288626","https://openalex.org/W2390279801","https://openalex.org/W2382290278","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2350741829","https://openalex.org/W2081900870","https://openalex.org/W2001405890"],"abstract_inverted_index":{"It":[0],"is":[1,13,101,117],"a":[2,48,111,149],"great":[3],"challenge":[4],"to":[5,41,78,91,102,110,119,158],"model":[6,29],"and":[7,26,69,85,136],"mine":[8],"the":[9,30,35,36,43,81,93,107,160,163,171],"e-commercial":[10,37,45,51,108,152],"data,":[11,38],"which":[12,116],"made":[14],"up":[15],"of":[16,19,98,162],"multiple":[17],"types":[18],"objects,":[20],"such":[21,126],"as":[22,127],"products,":[23],"users,":[24],"comments":[25],"tags.":[27],"To":[28],"complicated":[31],"interactive":[32],"relationships":[33],"in":[34,106,180],"we":[39],"propose":[40],"transform":[42],"complex":[44],"data":[46],"into":[47],"text-rich":[49],"heterogeneous":[50,86],"network.":[52],"Then":[53],"three":[54],"neural":[55],"network":[56,82,109],"based":[57],"embedding":[58],"algorithms":[59,140,176],"named":[60],"WTL":[61],"(Weighted":[62],"Text":[63],"Learning),":[64],"IBL":[65],"(Identity":[66,71],"Based":[67,72],"Learning)":[68,75],"IBTSL":[70],"Two":[73],"Steps":[74],"are":[76,141,156],"proposed":[77],"consider":[79],"both":[80],"structure":[83],"information":[84,90],"nodes":[87],"attributes":[88,133],"identity":[89],"learn":[92],"embeddings.":[94,165],"The":[95,166],"key":[96],"idea":[97],"our":[99,175],"models":[100],"map":[103],"all":[104],"objects":[105],"same":[112],"low-dimensional":[113],"vector":[114],"space,":[115],"useful":[118],"produce":[120],"meaningful":[121],"features":[122],"for":[123],"many":[124],"applications":[125,155],"product":[128,132],"classification,":[129,131],"comment":[130],"forecasting,":[134],"recommendation,":[135],"so":[137],"on.":[138],"Our":[139],"compared":[142],"with":[143],"other":[144],"existing":[145],"advanced":[146],"methods":[147],"on":[148],"real":[150],"large-scale":[151],"dataset.":[153],"Several":[154],"set":[157],"evaluate":[159],"effectivity":[161],"learned":[164],"experimental":[167],"results":[168],"show":[169],"that":[170],"embeddings":[172],"generated":[173],"by":[174],"have":[177],"superior":[178],"performance":[179],"each":[181],"application.":[182]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2734871728","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":4},{"year":2019,"cited_by_count":1}],"updated_date":"2025-01-03T18:07:29.576849","created_date":"2017-07-21"}