{"id":"https://openalex.org/W2550241242","doi":"https://doi.org/10.1109/ijcnn.2016.7727644","title":"X-MIFS: Exact Mutual Information for feature selection","display_name":"X-MIFS: Exact Mutual Information for feature selection","publication_year":2016,"publication_date":"2016-07-01","ids":{"openalex":"https://openalex.org/W2550241242","doi":"https://doi.org/10.1109/ijcnn.2016.7727644","mag":"2550241242"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2016.7727644","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5085078006","display_name":"Mauro Brunato","orcid":"https://orcid.org/0000-0002-7885-4255"},"institutions":[{"id":"https://openalex.org/I193223587","display_name":"University of Trento","ror":"https://ror.org/05trd4x28","country_code":"IT","type":"education","lineage":["https://openalex.org/I193223587"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Mauro Brunato","raw_affiliation_strings":["DISI-University of Trento, Italy"],"affiliations":[{"raw_affiliation_string":"DISI-University of Trento, Italy","institution_ids":["https://openalex.org/I193223587"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5061026406","display_name":"Roberto Battiti","orcid":"https://orcid.org/0000-0002-0259-8603"},"institutions":[{"id":"https://openalex.org/I193223587","display_name":"University of Trento","ror":"https://ror.org/05trd4x28","country_code":"IT","type":"education","lineage":["https://openalex.org/I193223587"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Roberto Battiti","raw_affiliation_strings":["DISI-University of Trento, Italy"],"affiliations":[{"raw_affiliation_string":"DISI-University of Trento, Italy","institution_ids":["https://openalex.org/I193223587"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.225,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":7,"citation_normalized_percentile":{"value":0.584182,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":83,"max":84},"biblio":{"volume":null,"issue":null,"first_page":"3469","last_page":"3476"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.6184508},{"id":"https://openalex.org/keywords/interaction-information","display_name":"Interaction information","score":0.57558894},{"id":"https://openalex.org/keywords/information-theory","display_name":"Information Theory","score":0.5698094},{"id":"https://openalex.org/keywords/total-correlation","display_name":"Total correlation","score":0.5389311},{"id":"https://openalex.org/keywords/conditional-mutual-information","display_name":"Conditional mutual information","score":0.5063602},{"id":"https://openalex.org/keywords/pointwise-mutual-information","display_name":"Pointwise mutual information","score":0.48220313}],"concepts":[{"id":"https://openalex.org/C152139883","wikidata":"https://www.wikidata.org/wiki/Q252973","display_name":"Mutual information","level":2,"score":0.9144092},{"id":"https://openalex.org/C148483581","wikidata":"https://www.wikidata.org/wiki/Q446488","display_name":"Feature selection","level":2,"score":0.6593893},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.6184508},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.57575667},{"id":"https://openalex.org/C38764148","wikidata":"https://www.wikidata.org/wiki/Q17098245","display_name":"Interaction information","level":2,"score":0.57558894},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.5747889},{"id":"https://openalex.org/C52622258","wikidata":"https://www.wikidata.org/wiki/Q131222","display_name":"Information theory","level":2,"score":0.5698094},{"id":"https://openalex.org/C109510780","wikidata":"https://www.wikidata.org/wiki/Q17149502","display_name":"Total correlation","level":3,"score":0.5389311},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.53256637},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5120111},{"id":"https://openalex.org/C124805900","wikidata":"https://www.wikidata.org/wiki/Q5159269","display_name":"Conditional mutual information","level":3,"score":0.5063602},{"id":"https://openalex.org/C7797323","wikidata":"https://www.wikidata.org/wiki/Q3798612","display_name":"Pointwise mutual information","level":3,"score":0.48220313},{"id":"https://openalex.org/C122123141","wikidata":"https://www.wikidata.org/wiki/Q176623","display_name":"Random variable","level":2,"score":0.47504807},{"id":"https://openalex.org/C182365436","wikidata":"https://www.wikidata.org/wiki/Q50701","display_name":"Variable (mathematics)","level":2,"score":0.47039115},{"id":"https://openalex.org/C149441793","wikidata":"https://www.wikidata.org/wiki/Q200726","display_name":"Probability distribution","level":2,"score":0.46957016},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.45584315},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.40572166},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.36757442},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.18893746},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2016.7727644","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":23,"referenced_works":["https://openalex.org/W1502050276","https://openalex.org/W1661871015","https://openalex.org/W2017337590","https://openalex.org/W2025210087","https://openalex.org/W2066873261","https://openalex.org/W2069116068","https://openalex.org/W2092939357","https://openalex.org/W2112143476","https://openalex.org/W2116801843","https://openalex.org/W2118858186","https://openalex.org/W2122925692","https://openalex.org/W2134478553","https://openalex.org/W2135046866","https://openalex.org/W2148633389","https://openalex.org/W2149454242","https://openalex.org/W2149772057","https://openalex.org/W2156483112","https://openalex.org/W2184852195","https://openalex.org/W2997674406","https://openalex.org/W2998216295","https://openalex.org/W3118608800","https://openalex.org/W4285719527","https://openalex.org/W4289259401"],"related_works":["https://openalex.org/W842936808","https://openalex.org/W4390964098","https://openalex.org/W4313429060","https://openalex.org/W4296367141","https://openalex.org/W4225940264","https://openalex.org/W2530029028","https://openalex.org/W2295845123","https://openalex.org/W2165143551","https://openalex.org/W2111510771","https://openalex.org/W2057609120"],"abstract_inverted_index":{"In":[0,145],"machine":[1,18],"learning,":[2],"an":[3],"information-theory":[4],"optimal":[5,56],"way":[6],"to":[7,15,45,73,165,186,209,246],"filter":[8],"the":[9,24,28,32,40,43,49,58,71,75,106,116,139,150,154,195,230,241,250,262],"best":[10],"input":[11,88],"features,":[12,207,227],"without":[13,163],"reference":[14],"any":[16,166],"specific":[17,136],"learning":[19],"models,":[20],"consists":[21],"of":[22,60,82,124,152,182,201,206,226,232,249],"maximizing":[23],"mutual":[25,76,117,156,197,242,268],"information":[26,61,77,118,157,198,243,269],"between":[27,158],"selected":[29,159],"features":[30,160],"and":[31,161,172,204,208,275],"model":[33],"output,":[34,162],"a":[35,63,79,121,257],"choice":[36],"which":[37,219],"will":[38],"minimize":[39],"uncertainty":[41],"in":[42,57,66,70,85,97,109,174,199,272],"output":[44],"be":[46],"predicted,":[47],"given":[48],"feature":[50,233,263],"values.":[51],"Although":[52],"this":[53,146,183],"criterion":[54],"is":[55,100,212],"context":[59],"theory,":[62],"practical":[64],"difficulty":[65],"using":[67],"it":[68,176],"lies":[69],"need":[72],"estimate":[74],"from":[78,93,102,105,169,177],"limited":[80,122],"set":[81,123],"input-output":[83],"examples,":[84],"possibly":[86],"very-high-dimensional":[87],"spaces.":[89],"Estimating":[90],"probability":[91,140],"densities":[92,141],"some":[94,216],"data":[95],"points":[96],"these":[98],"conditions":[99],"far":[101,189],"trivial.":[103],"Starting":[104],"seminal":[107],"proposals":[108],"[1],":[110],"different":[111],"approaches":[112],"focus":[113],"on":[114,240],"approximating":[115],"by":[119,134,193,214,266],"considering":[120,153],"variable":[125],"dependencies":[126,128],"(like":[127,142],"among":[129,223],"couples":[130],"or":[131,133,237],"triplets),":[132],"assuming":[135],"forms":[137],"for":[138],"Gaussian":[143],"forms).":[144],"paper":[147],"we":[148],"study":[149],"effect":[151],"exact":[155,196,251,267],"resorting":[164],"approximation":[167],"(apart":[168],"that":[170],"implicit":[171],"unavoidable":[173],"estimating":[175],"experimental":[178,254],"data).":[179],"The":[180,253],"objectives":[181],"investigation":[184],"are:":[185],"assess":[187],"how":[188],"one":[190],"can":[191],"go":[192],"adopting":[194,215],"terms":[200],"CPU":[202,281],"time":[203],"number":[205],"measure":[210],"what":[211],"lost":[213],"popular":[217],"approximations":[218],"consider":[220],"only":[221],"relationships":[222],"small":[224],"subsets":[225],"assumptions":[228],"about":[229],"distribution":[231],"values":[234],"(e.g.":[235],"Gaussian)":[236],"upper":[238],"bounds":[239],"as":[244],"proxies":[245],"maximize":[247],"instead":[248],"value.":[252],"results":[255],"show":[256],"significant":[258],"performance":[259],"advantage":[260],"when":[261],"sets":[264],"identified":[265],"are":[270],"used":[271],"both":[273],"binary":[274],"multi-valued":[276],"classification":[277],"tasks,":[278],"with":[279],"longer":[280],"times.":[282]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2550241242","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":1},{"year":2018,"cited_by_count":2}],"updated_date":"2025-01-05T00:22:12.799824","created_date":"2016-11-30"}