{"id":"https://openalex.org/W2021311607","doi":"https://doi.org/10.1109/ijcnn.2013.6707042","title":"High level data classification based on network entropy","display_name":"High level data classification based on network entropy","publication_year":2013,"publication_date":"2013-08-01","ids":{"openalex":"https://openalex.org/W2021311607","doi":"https://doi.org/10.1109/ijcnn.2013.6707042","mag":"2021311607"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2013.6707042","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5110036861","display_name":"Filipe Alves Neto","orcid":null},"institutions":[{"id":"https://openalex.org/I17974374","display_name":"Universidade de S\u00e3o Paulo","ror":"https://ror.org/036rp1748","country_code":"BR","type":"funder","lineage":["https://openalex.org/I17974374"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Filipe Alves Neto","raw_affiliation_strings":["Dept. of Comput. Sci., Univ. of Sao Paulo-USP, Sao Carlos, Brazil"],"affiliations":[{"raw_affiliation_string":"Dept. of Comput. Sci., Univ. of Sao Paulo-USP, Sao Carlos, Brazil","institution_ids":["https://openalex.org/I17974374"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100697945","display_name":"Liang Zhao","orcid":"https://orcid.org/0000-0002-1502-6604"},"institutions":[{"id":"https://openalex.org/I17974374","display_name":"Universidade de S\u00e3o Paulo","ror":"https://ror.org/036rp1748","country_code":"BR","type":"funder","lineage":["https://openalex.org/I17974374"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Liang Zhao","raw_affiliation_strings":["Dept. of Comput. Sci., Univ. of Sao Paulo-USP, Sao Carlos, Brazil"],"affiliations":[{"raw_affiliation_string":"Dept. of Comput. Sci., Univ. of Sao Paulo-USP, Sao Carlos, Brazil","institution_ids":["https://openalex.org/I17974374"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":5,"citation_normalized_percentile":{"value":0.565913,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":80,"max":81},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"5"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10064","display_name":"Complex Network Analysis Techniques","score":0.9964,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10064","display_name":"Complex Network Analysis Techniques","score":0.9964,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9951,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9651,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/data-classification","display_name":"Data classification","score":0.523221},{"id":"https://openalex.org/keywords/statistical-classification","display_name":"Statistical classification","score":0.42318168}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7275089},{"id":"https://openalex.org/C106301342","wikidata":"https://www.wikidata.org/wiki/Q4117933","display_name":"Entropy (arrow of time)","level":2,"score":0.61453855},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.59317136},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.57204396},{"id":"https://openalex.org/C2780724565","wikidata":"https://www.wikidata.org/wiki/Q5227256","display_name":"Data classification","level":2,"score":0.523221},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.48275155},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.42773214},{"id":"https://openalex.org/C110083411","wikidata":"https://www.wikidata.org/wiki/Q1744628","display_name":"Statistical classification","level":2,"score":0.42318168},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2013.6707042","pdf_url":null,"source":{"id":"https://openalex.org/S4363607707","display_name":"2022 International Joint Conference on Neural Networks (IJCNN)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":10,"referenced_works":["https://openalex.org/W1514107797","https://openalex.org/W1964062850","https://openalex.org/W2009086942","https://openalex.org/W2029173860","https://openalex.org/W2070722739","https://openalex.org/W2077551920","https://openalex.org/W2165867280","https://openalex.org/W2623293810","https://openalex.org/W2795444554","https://openalex.org/W3120740533"],"related_works":["https://openalex.org/W4398199373","https://openalex.org/W3202881146","https://openalex.org/W3199023014","https://openalex.org/W2740479052","https://openalex.org/W2596054022","https://openalex.org/W2371570177","https://openalex.org/W2357721021","https://openalex.org/W2168920113","https://openalex.org/W2099660729","https://openalex.org/W1529156857"],"abstract_inverted_index":{"Traditional":[0],"data":[1,71,114,126,137],"classification":[2,19,47,103],"is":[3,30,139],"based":[4],"only":[5,23],"on":[6],"physical":[7,24],"features":[8],"of":[9,51,69,91,112],"input":[10,56,113],"data.":[11,57,149],"They":[12],"are":[13],"called":[14],"low":[15],"level":[16,33,46],"classification.":[17,34],"Data":[18],"by":[20,48],"considering":[21],"not":[22],"attributes":[25],"but":[26],"also":[27],"pattern":[28,110],"formation":[29,111],"denominated":[31],"high":[32,45],"In":[35,128],"this":[36],"paper,":[37],"we":[38,59,77],"propose":[39],"a":[40,70,136,144],"new":[41,145],"technique":[42,131],"that":[43,97],"performs":[44],"extracting":[49],"information":[50],"networks":[52],"constructed":[53],"from":[54],"the":[55,61,67,83,88,92,98,120],"Specifically,":[58],"calculate":[60,133],"network":[62],"entropies":[63],"before":[64],"and":[65,109,124],"after":[66],"insertion":[68],"item":[72,138],"to":[73,82,106,115,147],"be":[74],"classified.":[75],"Then,":[76],"classify":[78,148],"it":[79],"as":[80],"belonging":[81],"class":[84,142],"which":[85],"results":[86,118],"in":[87,119],"largest":[89],"increase":[90],"entropy":[93],"measures.":[94],"We":[95],"show":[96],"proposed":[99],"method":[100],"can":[101,132],"execute":[102],"tasks":[104],"according":[105],"both":[107],"similarity":[108],"reach":[116],"good":[117],"experiments":[121],"with":[122],"artificial":[123],"real":[125],"sets.":[127],"summary,":[129],"our":[130],"how":[134],"significant":[135],"for":[140],"each":[141],"performing":[143],"way":[146]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2021311607","counts_by_year":[{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":1},{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":1}],"updated_date":"2025-04-21T06:49:11.608010","created_date":"2016-06-24"}