{"id":"https://openalex.org/W2095905150","doi":"https://doi.org/10.1109/ijcnn.2011.6033232","title":"Some experimental results on sparsely connected autoassociative morphological memories for the reconstruction of color images corrupted by either impulsive or Gaussian noise","display_name":"Some experimental results on sparsely connected autoassociative morphological memories for the reconstruction of color images corrupted by either impulsive or Gaussian noise","publication_year":2011,"publication_date":"2011-07-01","ids":{"openalex":"https://openalex.org/W2095905150","doi":"https://doi.org/10.1109/ijcnn.2011.6033232","mag":"2095905150"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2011.6033232","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5012009095","display_name":"Marcos Eduardo Valle","orcid":"https://orcid.org/0000-0003-4026-5110"},"institutions":[{"id":"https://openalex.org/I127110123","display_name":"Universidade Estadual de Londrina","ror":"https://ror.org/01585b035","country_code":"BR","type":"funder","lineage":["https://openalex.org/I127110123"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Marcos Eduardo Valle","raw_affiliation_strings":["Department of Mathematics - University of Londrina, Brazil, PR 86051-990"],"affiliations":[{"raw_affiliation_string":"Department of Mathematics - University of Londrina, Brazil, PR 86051-990","institution_ids":["https://openalex.org/I127110123"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5037145183","display_name":"Daniela Maria Grande Vicente","orcid":"https://orcid.org/0000-0002-1766-8571"},"institutions":[{"id":"https://openalex.org/I127110123","display_name":"Universidade Estadual de Londrina","ror":"https://ror.org/01585b035","country_code":"BR","type":"funder","lineage":["https://openalex.org/I127110123"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Daniela Maria Grande Vicente","raw_affiliation_strings":["Department of Mathematics - University of Londrina, Brazil, PR 86051-990"],"affiliations":[{"raw_affiliation_string":"Department of Mathematics - University of Londrina, Brazil, PR 86051-990","institution_ids":["https://openalex.org/I127110123"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.619,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":4,"citation_normalized_percentile":{"value":0.565241,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":78,"max":80},"biblio":{"volume":null,"issue":null,"first_page":"275","last_page":"282"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9938,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9826,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/rgb-color-model","display_name":"RGB color model","score":0.7089404},{"id":"https://openalex.org/keywords/gaussian-noise","display_name":"Gaussian Noise","score":0.55969006},{"id":"https://openalex.org/keywords/colors-of-noise","display_name":"Colors of noise","score":0.48895562},{"id":"https://openalex.org/keywords/color-quantization","display_name":"Color quantization","score":0.44079998}],"concepts":[{"id":"https://openalex.org/C82990744","wikidata":"https://www.wikidata.org/wiki/Q166194","display_name":"RGB color model","level":2,"score":0.7089404},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.68622446},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6552141},{"id":"https://openalex.org/C4199805","wikidata":"https://www.wikidata.org/wiki/Q2725903","display_name":"Gaussian noise","level":2,"score":0.55969006},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.51734155},{"id":"https://openalex.org/C114996537","wikidata":"https://www.wikidata.org/wiki/Q4854529","display_name":"Colors of noise","level":3,"score":0.48895562},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.4866858},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.48433316},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.45940557},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.45272803},{"id":"https://openalex.org/C173752661","wikidata":"https://www.wikidata.org/wiki/Q1396414","display_name":"Color quantization","level":5,"score":0.44079998},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.42420608},{"id":"https://openalex.org/C142616399","wikidata":"https://www.wikidata.org/wiki/Q5148604","display_name":"Color image","level":4,"score":0.41908902},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3950184},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.25005695},{"id":"https://openalex.org/C9417928","wikidata":"https://www.wikidata.org/wiki/Q1070689","display_name":"Image processing","level":3,"score":0.22726175},{"id":"https://openalex.org/C163294075","wikidata":"https://www.wikidata.org/wiki/Q581861","display_name":"Noise reduction","level":2,"score":0.13062456},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2011.6033232","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":36,"referenced_works":["https://openalex.org/W137978541","https://openalex.org/W147723833","https://openalex.org/W1490482062","https://openalex.org/W1493971325","https://openalex.org/W1535367139","https://openalex.org/W1545838455","https://openalex.org/W1590218343","https://openalex.org/W1591800128","https://openalex.org/W1966639131","https://openalex.org/W1967870595","https://openalex.org/W1968581726","https://openalex.org/W1975891294","https://openalex.org/W1990073712","https://openalex.org/W1991848143","https://openalex.org/W2024879722","https://openalex.org/W2028933144","https://openalex.org/W2034076462","https://openalex.org/W2072883612","https://openalex.org/W2079952207","https://openalex.org/W2098070646","https://openalex.org/W2101496652","https://openalex.org/W2109853861","https://openalex.org/W2116145986","https://openalex.org/W2124503759","https://openalex.org/W2128084896","https://openalex.org/W2142574221","https://openalex.org/W2150526442","https://openalex.org/W2153342234","https://openalex.org/W2162672407","https://openalex.org/W2164741953","https://openalex.org/W2505399031","https://openalex.org/W2769043187","https://openalex.org/W3023411394","https://openalex.org/W3141802282","https://openalex.org/W4247086295","https://openalex.org/W4253735042"],"related_works":["https://openalex.org/W3143465902","https://openalex.org/W2926619812","https://openalex.org/W2216907995","https://openalex.org/W2112901162","https://openalex.org/W2087087326","https://openalex.org/W2078566741","https://openalex.org/W1986743941","https://openalex.org/W1966900924","https://openalex.org/W1586295832","https://openalex.org/W1490191303"],"abstract_inverted_index":{"Sparsely":[0],"connected":[1],"autoassociative":[2],"morphological":[3],"memories":[4,29],"(SCAMMs)":[5],"are":[6,30],"single":[7],"layer":[8],"feedforward":[9],"neural":[10],"networks":[11],"that":[12],"compute":[13],"either":[14,138],"the":[15,18,25,69,86,94,120,131],"maximum":[16],"or":[17,140],"minimum":[19],"of":[20,24,41,73,82,108,122,133],"a":[21,38,48,60],"finite":[22],"subset":[23],"input":[26],"signals.":[27],"These":[28],"computationally":[31],"cheaper":[32],"than":[33],"traditional":[34],"models":[35],"and":[36,71,89],"have":[37],"wide":[39],"range":[40],"applications":[42],"because":[43],"they":[44],"rely":[45],"only":[46],"on":[47,59,119,125],"complete":[49],"lattice":[50],"structure,":[51],"which":[52],"is":[53],"obtained":[54],"by":[55,137],"imposing":[56],"some":[57,116],"ordering":[58],"set.":[61],"In":[62,106],"particular,":[63],"SCAMMs":[64],"can":[65,96],"be":[66,97],"used":[67],"for":[68,130],"storage":[70],"recall":[72],"color":[74,83,91,128,134],"images.":[75],"However,":[76],"there":[77],"exist":[78],"several":[79],"mathematical":[80],"representations":[81],"images,":[84],"including":[85],"RGB,":[87],"HSL,":[88],"CIELab":[90],"systems.":[92],"Furthermore,":[93],"colors":[95],"ordered":[98,127],"in":[99,103],"many":[100],"different":[101,126],"ways":[102],"each":[104],"system.":[105],"view":[107],"these":[109],"remarks,":[110],"this":[111],"paper":[112],"aims":[113],"at":[114],"providing":[115],"experimental":[117],"results":[118],"performance":[121],"SCAMMs,":[123],"defined":[124],"models,":[129],"reconstruction":[132],"images":[135],"corrupted":[136],"Gaussian":[139],"impulsive":[141],"noise.":[142]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2095905150","counts_by_year":[{"year":2018,"cited_by_count":1},{"year":2014,"cited_by_count":1},{"year":2013,"cited_by_count":1},{"year":2012,"cited_by_count":1}],"updated_date":"2025-02-25T13:21:49.005325","created_date":"2016-06-24"}