{"id":"https://openalex.org/W2160992104","doi":"https://doi.org/10.1109/ijcnn.2009.5178775","title":"Forecasting of clustered time series with recurrent neural networks and a fuzzy clustering scheme","display_name":"Forecasting of clustered time series with recurrent neural networks and a fuzzy clustering scheme","publication_year":2009,"publication_date":"2009-06-01","ids":{"openalex":"https://openalex.org/W2160992104","doi":"https://doi.org/10.1109/ijcnn.2009.5178775","mag":"2160992104"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2009.5178775","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5025510064","display_name":"Hans Georg Seedig","orcid":null},"institutions":[{"id":"https://openalex.org/I120691247","display_name":"University of Hagen","ror":"https://ror.org/04tkkr536","country_code":"DE","type":"education","lineage":["https://openalex.org/I120691247"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Hans Georg Seedig","raw_affiliation_strings":["Mathematics and Computer Science, Technische Univerist\u00e4t M\u00fcnchen, Munchen, Germany","Studies Business Administration, University of Hagen, Germany"],"affiliations":[{"raw_affiliation_string":"Mathematics and Computer Science, Technische Univerist\u00e4t M\u00fcnchen, Munchen, Germany","institution_ids":[]},{"raw_affiliation_string":"Studies Business Administration, University of Hagen, Germany","institution_ids":["https://openalex.org/I120691247"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5001688380","display_name":"Ralph Grothmann","orcid":null},"institutions":[{"id":"https://openalex.org/I1325886976","display_name":"Siemens (Germany)","ror":"https://ror.org/059mq0909","country_code":"DE","type":"company","lineage":["https://openalex.org/I1325886976"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Ralph Grothmann","raw_affiliation_strings":["Corporate Technology, Siemens AG, Munich, Germany"],"affiliations":[{"raw_affiliation_string":"Corporate Technology, Siemens AG, Munich, Germany","institution_ids":["https://openalex.org/I1325886976"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5002518694","display_name":"Thomas A. Runkler","orcid":"https://orcid.org/0000-0002-5465-198X"},"institutions":[{"id":"https://openalex.org/I1325886976","display_name":"Siemens (Germany)","ror":"https://ror.org/059mq0909","country_code":"DE","type":"company","lineage":["https://openalex.org/I1325886976"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Thomas A. Runkler","raw_affiliation_strings":["Learning Systems Department, Corporate Technology, Siemens AG, Munich, Germany"],"affiliations":[{"raw_affiliation_string":"Learning Systems Department, Corporate Technology, Siemens AG, Munich, Germany","institution_ids":["https://openalex.org/I1325886976"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.658,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":10,"citation_normalized_percentile":{"value":0.742761,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":84,"max":85},"biblio":{"volume":null,"issue":null,"first_page":"2846","last_page":"2853"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9964,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10820","display_name":"Fuzzy Logic and Control Systems","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/data-set","display_name":"Data set","score":0.41547334}],"concepts":[{"id":"https://openalex.org/C143724316","wikidata":"https://www.wikidata.org/wiki/Q312468","display_name":"Series (stratigraphy)","level":2,"score":0.6934594},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.68996716},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.6773323},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.66382384},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.6322083},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.5824994},{"id":"https://openalex.org/C42812","wikidata":"https://www.wikidata.org/wiki/Q1082910","display_name":"Partition (number theory)","level":2,"score":0.5162756},{"id":"https://openalex.org/C58166","wikidata":"https://www.wikidata.org/wiki/Q224821","display_name":"Fuzzy logic","level":2,"score":0.4277961},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.42520916},{"id":"https://openalex.org/C17212007","wikidata":"https://www.wikidata.org/wiki/Q5511111","display_name":"Fuzzy clustering","level":3,"score":0.421094},{"id":"https://openalex.org/C58489278","wikidata":"https://www.wikidata.org/wiki/Q1172284","display_name":"Data set","level":2,"score":0.41547334},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.391142},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.31090337},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.19688123},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2009.5178775","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W1554663460","https://openalex.org/W1573503290","https://openalex.org/W1576278180","https://openalex.org/W1605391192","https://openalex.org/W2010315317","https://openalex.org/W2040870580","https://openalex.org/W2079325629","https://openalex.org/W2108457651","https://openalex.org/W2112922262","https://openalex.org/W2113076747","https://openalex.org/W2152562676","https://openalex.org/W2161336564","https://openalex.org/W2170590171","https://openalex.org/W2192727641","https://openalex.org/W2313953460","https://openalex.org/W3121926921","https://openalex.org/W3207342693","https://openalex.org/W4230715394","https://openalex.org/W4302564868","https://openalex.org/W438673378","https://openalex.org/W4388297464"],"related_works":["https://openalex.org/W4388110928","https://openalex.org/W4292434959","https://openalex.org/W4224807364","https://openalex.org/W2945382830","https://openalex.org/W2596632494","https://openalex.org/W2535986621","https://openalex.org/W2382432689","https://openalex.org/W2000612978","https://openalex.org/W1980197432","https://openalex.org/W1483228865"],"abstract_inverted_index":{"Fuzzy":[0],"c-neural":[1],"network":[2,69],"models":[3,70],"(FCNNM)":[4],"combine":[5],"clustering":[6],"techniques":[7],"with":[8,57,83],"advanced":[9],"neural":[10,68],"networks":[11],"for":[12,21,71],"time":[13,27,40,53,81],"series":[14,28,54,82,111],"modeling":[15],"in":[16,88,96],"order":[17],"to":[18,49,76,108],"make":[19],"predictions":[20],"a":[22,31,37,44],"possibly":[23],"large":[24],"set":[25,38],"of":[26,34,39,66,80,93,98,106,114],"using":[29],"only":[30],"small":[32],"number":[33],"models.":[35],"Given":[36],"series,":[41],"FCNNM":[42,74,107],"finds":[43],"partition":[45],"matrix":[46],"that":[47],"quantifies":[48],"which":[50],"degree":[51],"each":[52,58,72],"is":[55],"associated":[56],"prediction":[59],"model,":[60],"as":[61,63,112],"well":[62],"the":[64,67,104],"parameters":[65],"cluster.":[73],"allows":[75],"automatically":[77],"identify":[78],"groups":[79],"similar":[84],"dynamics.":[85],"This":[86],"results":[87],"higher":[89],"data":[90,100],"efficiency,":[91],"being":[92],"particular":[94],"interest":[95],"cases":[97],"poor":[99],"availability.":[101],"We":[102],"illustrate":[103],"application":[105],"cash":[109,117],"withdrawal":[110],"part":[113],"an":[115],"effective":[116],"management.":[118]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2160992104","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":1},{"year":2014,"cited_by_count":2},{"year":2012,"cited_by_count":2}],"updated_date":"2024-12-13T12:46:38.102194","created_date":"2016-06-24"}