{"id":"https://openalex.org/W2102661468","doi":"https://doi.org/10.1109/ijcnn.2009.5178594","title":"Computationally efficient FLANN-based intelligent stock price prediction system","display_name":"Computationally efficient FLANN-based intelligent stock price prediction system","publication_year":2009,"publication_date":"2009-06-01","ids":{"openalex":"https://openalex.org/W2102661468","doi":"https://doi.org/10.1109/ijcnn.2009.5178594","mag":"2102661468"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2009.5178594","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5049913930","display_name":"Jagdish C. Patra","orcid":"https://orcid.org/0000-0002-6257-0469"},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"education","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Jagdish C. Patra","raw_affiliation_strings":["School of Computer Engineering, Nanyang Technological University,,Singapore"],"affiliations":[{"raw_affiliation_string":"School of Computer Engineering, Nanyang Technological University,,Singapore","institution_ids":["https://openalex.org/I172675005"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102890535","display_name":"Nguy\u1ec5n Ch\u00ed Th\u00e0nh","orcid":"https://orcid.org/0000-0003-4335-7002"},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"education","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Nguyen C. Thanh","raw_affiliation_strings":["School of Computer Engineering, Nanyang Technological University,,Singapore"],"affiliations":[{"raw_affiliation_string":"School of Computer Engineering, Nanyang Technological University,,Singapore","institution_ids":["https://openalex.org/I172675005"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5025809855","display_name":"Pramod Kumar Meher","orcid":"https://orcid.org/0000-0003-0992-1159"},"institutions":[{"id":"https://openalex.org/I172675005","display_name":"Nanyang Technological University","ror":"https://ror.org/02e7b5302","country_code":"SG","type":"education","lineage":["https://openalex.org/I172675005"]}],"countries":["SG"],"is_corresponding":false,"raw_author_name":"Pramod K. Meher","raw_affiliation_strings":["School of Computer Engineering, Nanyang Technological University,,Singapore"],"affiliations":[{"raw_affiliation_string":"School of Computer Engineering, Nanyang Technological University,,Singapore","institution_ids":["https://openalex.org/I172675005"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":44,"citation_normalized_percentile":{"value":0.925781,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":null,"issue":null,"first_page":"2431","last_page":"2438"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9858,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/multilayer-perceptron","display_name":"Multilayer perceptron","score":0.58731663},{"id":"https://openalex.org/keywords/stock","display_name":"Stock (firearms)","score":0.5221986}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.71974117},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.6760055},{"id":"https://openalex.org/C2988984586","wikidata":"https://www.wikidata.org/wiki/Q1020013","display_name":"Stock price","level":3,"score":0.5987178},{"id":"https://openalex.org/C179717631","wikidata":"https://www.wikidata.org/wiki/Q2991667","display_name":"Multilayer perceptron","level":3,"score":0.58731663},{"id":"https://openalex.org/C204036174","wikidata":"https://www.wikidata.org/wiki/Q909380","display_name":"Stock (firearms)","level":2,"score":0.5221986},{"id":"https://openalex.org/C139945424","wikidata":"https://www.wikidata.org/wiki/Q1940696","display_name":"Mean squared error","level":2,"score":0.5147481},{"id":"https://openalex.org/C2778775528","wikidata":"https://www.wikidata.org/wiki/Q5135432","display_name":"Closing (real estate)","level":2,"score":0.46347794},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.42878714},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.40606546},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3398146},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.33235806},{"id":"https://openalex.org/C10138342","wikidata":"https://www.wikidata.org/wiki/Q43015","display_name":"Finance","level":1,"score":0.15301067},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.14508292},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.1150409},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.108329624},{"id":"https://openalex.org/C143724316","wikidata":"https://www.wikidata.org/wiki/Q312468","display_name":"Series (stratigraphy)","level":2,"score":0.09172693},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.08854294},{"id":"https://openalex.org/C78519656","wikidata":"https://www.wikidata.org/wiki/Q101333","display_name":"Mechanical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2009.5178594","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":21,"referenced_works":["https://openalex.org/W1541274513","https://openalex.org/W1582290234","https://openalex.org/W185347176","https://openalex.org/W1988224834","https://openalex.org/W1995456904","https://openalex.org/W2093090592","https://openalex.org/W2108360946","https://openalex.org/W2119259871","https://openalex.org/W2126885794","https://openalex.org/W2128810507","https://openalex.org/W2144111933","https://openalex.org/W2148999633","https://openalex.org/W2149350706","https://openalex.org/W2149633764","https://openalex.org/W2155744005","https://openalex.org/W2158663270","https://openalex.org/W2166859533","https://openalex.org/W2168884668","https://openalex.org/W2170857480","https://openalex.org/W3125462345","https://openalex.org/W4248994607"],"related_works":["https://openalex.org/W4384209958","https://openalex.org/W4327814505","https://openalex.org/W4322009192","https://openalex.org/W4320483926","https://openalex.org/W3203207972","https://openalex.org/W3124131549","https://openalex.org/W3008476150","https://openalex.org/W2559793074","https://openalex.org/W247222457","https://openalex.org/W1488120909"],"abstract_inverted_index":{"We":[0,45,88],"propose":[1],"a":[2,31,54,96],"computationally":[3,32],"efficient":[4,33],"and":[5,24,57,82,119],"effective":[6],"novel":[7],"neural":[8,37],"network":[9,38],"for":[10,85],"predicting":[11],"the":[12,47,62,79],"next-day's":[13],"closing":[14],"price":[15,43,51,64],"of":[16],"US":[17],"stocks":[18],"in":[19,40,49],"different":[20,106],"sectors:":[21],"technology,":[22],"energy":[23],"finance.":[25],"In":[26,66],"this":[27],"paper":[28],"we":[29,72],"used":[30],"functional":[34],"link":[35],"artificial":[36],"(FLANN)":[39],"making":[41],"stock":[42,50,63],"prediction.":[44],"modeled":[46],"trend":[48],"movement":[52],"as":[53,78],"dynamic":[55],"system":[56],"apply":[58],"FLANN":[59],"to":[60,68],"predict":[61],"behavior.":[65],"addition":[67],"historical":[69],"pricing":[70],"data,":[71],"considered":[73],"other":[74],"financial":[75],"indicators":[76],"such":[77],"industrial":[80],"indices":[81],"technical":[83],"indicators,":[84],"better":[86],"accuracy.":[87],"showed":[89],"its":[90],"superior":[91],"performance":[92,107],"by":[93],"comparing":[94],"with":[95],"multilayer":[97],"perceptron":[98],"(MLP)-based":[99],"model":[100],"through":[101],"several":[102],"experiments":[103],"based":[104],"on":[105],"metrics,":[108],"namely,":[109],"computational":[110],"complexity,":[111],"root":[112],"mean":[113],"square":[114],"error,":[115],"average":[116],"percentage":[117],"error":[118],"hit":[120],"rate.":[121]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2102661468","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":2},{"year":2021,"cited_by_count":3},{"year":2020,"cited_by_count":3},{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":7},{"year":2017,"cited_by_count":2},{"year":2016,"cited_by_count":2},{"year":2015,"cited_by_count":10},{"year":2014,"cited_by_count":9},{"year":2013,"cited_by_count":3},{"year":2012,"cited_by_count":1}],"updated_date":"2025-01-01T20:22:30.534774","created_date":"2016-06-24"}