{"id":"https://openalex.org/W2127148679","doi":"https://doi.org/10.1109/ijcnn.2008.4634366","title":"Combining neural-based regression predictors using an unbiased and normalized linear ensemble model","display_name":"Combining neural-based regression predictors using an unbiased and normalized linear ensemble model","publication_year":2008,"publication_date":"2008-06-01","ids":{"openalex":"https://openalex.org/W2127148679","doi":"https://doi.org/10.1109/ijcnn.2008.4634366","mag":"2127148679"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2008.4634366","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5007483809","display_name":"Yunfeng Wu","orcid":"https://orcid.org/0000-0002-3612-7818"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"education","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yunfeng Wu","raw_affiliation_strings":["Sch. of Inf. Eng., Beijing Univ. of Posts & Telecommun., Beijing"],"affiliations":[{"raw_affiliation_string":"Sch. of Inf. Eng., Beijing Univ. of Posts & Telecommun., Beijing","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5038657977","display_name":"Yachao Zhou","orcid":null},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"None Yachao Zhou","raw_affiliation_strings":["Dept-of Computer Science and Technology, Tsinghua University, Beijing,"],"affiliations":[{"raw_affiliation_string":"Dept-of Computer Science and Technology, Tsinghua University, Beijing,","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5037222502","display_name":"Sin-Chun Ng","orcid":"https://orcid.org/0000-0002-2972-530X"},"institutions":[{"id":"https://openalex.org/I8679417","display_name":"Hong Kong Metropolitan University","ror":"https://ror.org/0349bsm71","country_code":"HK","type":"education","lineage":["https://openalex.org/I8679417"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Sin-Chun Ng","raw_affiliation_strings":["Sch. of Sci. & Technol., Open Univ. of Hong Kong, Kowloon"],"affiliations":[{"raw_affiliation_string":"Sch. of Sci. & Technol., Open Univ. of Hong Kong, Kowloon","institution_ids":["https://openalex.org/I8679417"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101037440","display_name":"Yixin Zhong","orcid":null},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"education","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yixin Zhong","raw_affiliation_strings":["Sch. of Inf. Eng., Beijing Univ. of Posts & Telecommun., Beijing"],"affiliations":[{"raw_affiliation_string":"Sch. of Inf. Eng., Beijing Univ. of Posts & Telecommun., Beijing","institution_ids":["https://openalex.org/I139759216"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":1,"citation_normalized_percentile":{"value":0.214607,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":63,"max":70},"biblio":{"volume":null,"issue":null,"first_page":"3955","last_page":"3960"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11871","display_name":"Advanced Statistical Methods and Models","score":0.9936,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.46655458}],"concepts":[{"id":"https://openalex.org/C73684929","wikidata":"https://www.wikidata.org/wiki/Q598870","display_name":"Lagrange multiplier","level":2,"score":0.6630033},{"id":"https://openalex.org/C48921125","wikidata":"https://www.wikidata.org/wiki/Q10861030","display_name":"Linear regression","level":2,"score":0.63562185},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.5724112},{"id":"https://openalex.org/C149769383","wikidata":"https://www.wikidata.org/wiki/Q7520804","display_name":"Simple linear regression","level":3,"score":0.5381506},{"id":"https://openalex.org/C152877465","wikidata":"https://www.wikidata.org/wiki/Q208042","display_name":"Regression analysis","level":2,"score":0.52409995},{"id":"https://openalex.org/C139945424","wikidata":"https://www.wikidata.org/wiki/Q1940696","display_name":"Mean squared error","level":2,"score":0.5235626},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.5150571},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.46655458},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.4369648},{"id":"https://openalex.org/C81845259","wikidata":"https://www.wikidata.org/wiki/Q290117","display_name":"Quadratic programming","level":2,"score":0.43618858},{"id":"https://openalex.org/C120068334","wikidata":"https://www.wikidata.org/wiki/Q45343","display_name":"Polynomial regression","level":3,"score":0.43249685},{"id":"https://openalex.org/C32224588","wikidata":"https://www.wikidata.org/wiki/Q7250175","display_name":"Proper linear model","level":4,"score":0.43202126},{"id":"https://openalex.org/C2780586882","wikidata":"https://www.wikidata.org/wiki/Q7520643","display_name":"Simple (philosophy)","level":2,"score":0.42248115},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.3844537},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.25147212},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2008.4634366","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":42,"referenced_works":["https://openalex.org/W1512908228","https://openalex.org/W1581460649","https://openalex.org/W1970295782","https://openalex.org/W1988790447","https://openalex.org/W1995945562","https://openalex.org/W2022779122","https://openalex.org/W2029896651","https://openalex.org/W2080640767","https://openalex.org/W2093717447","https://openalex.org/W2094198523","https://openalex.org/W2094860253","https://openalex.org/W2100805904","https://openalex.org/W2103000991","https://openalex.org/W2103496339","https://openalex.org/W2115419801","https://openalex.org/W2118277177","https://openalex.org/W2124776405","https://openalex.org/W2133176659","https://openalex.org/W2139851341","https://openalex.org/W2148747124","https://openalex.org/W2155399784","https://openalex.org/W2155482699","https://openalex.org/W2158275940","https://openalex.org/W2160767978","https://openalex.org/W2168847089","https://openalex.org/W2487087946","https://openalex.org/W2489605225","https://openalex.org/W2489822048","https://openalex.org/W2498631646","https://openalex.org/W2912934387","https://openalex.org/W2914369697","https://openalex.org/W3004732066","https://openalex.org/W3106889297","https://openalex.org/W3120740533","https://openalex.org/W4205675758","https://openalex.org/W4206495155","https://openalex.org/W4211152568","https://openalex.org/W4212883601","https://openalex.org/W4240294902","https://openalex.org/W4285719527","https://openalex.org/W623416330","https://openalex.org/W636084637"],"related_works":["https://openalex.org/W600390644","https://openalex.org/W4230983264","https://openalex.org/W4226071118","https://openalex.org/W3106586668","https://openalex.org/W2886532972","https://openalex.org/W2743208879","https://openalex.org/W2066533688","https://openalex.org/W206160466","https://openalex.org/W1685088304","https://openalex.org/W1513444006"],"abstract_inverted_index":{"In":[0,28,54],"this":[1],"paper,":[2],"we":[3],"combined":[4],"a":[5,12,41,127],"group":[6],"of":[7,24,33,58,68,72,80,95,101],"local":[8,73],"regression":[9,74,124],"predictors":[10],"using":[11],"novel":[13],"unbiased":[14],"and":[15,76,89],"normalized":[16,130],"linear":[17],"ensemble":[18,35,114],"model":[19],"(UNLEM)":[20],"for":[21],"the":[22,29,31,34,51,61,77,81,96,110,117,123,134,138],"design":[23],"multiple":[25,63],"predictor":[26,64],"systems.":[27],"UNLEM,":[30],"optimization":[32],"weights":[36],"is":[37,66,119],"formulated":[38],"equivalently":[39],"to":[40,121],"constrained":[42],"quadratic":[43],"programming":[44],"problem,":[45],"which":[46],"can":[47],"be":[48],"solved":[49],"with":[50,109,126,137],"Lagrange":[52],"multiplier.":[53],"our":[55],"simulation":[56],"experiments":[57],"data":[59,92],"regression,":[60],"proposed":[62],"system":[65],"composed":[67],"three":[69],"different":[70],"types":[71],"predictors,":[75],"effectiveness":[78],"evaluation":[79],"UNLEM":[82,118],"was":[83],"carried":[84],"out":[85],"on":[86],"eight":[87],"synthetic":[88],"four":[90],"benchmark":[91],"sets.":[93],"Results":[94],"UNLEM's":[97],"performance":[98],"in":[99,107],"terms":[100],"mean-squared":[102],"error":[103],"are":[104],"significantly":[105],"lower,":[106],"comparison":[108],"popular":[111],"simple":[112,139],"average":[113,140],"method.":[115],"Moreover,":[116],"able":[120],"provide":[122],"predictions":[125],"relatively":[128],"higher":[129],"correlation":[131],"coefficient":[132],"than":[133],"results":[135],"obtained":[136],"approach.":[141]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2127148679","counts_by_year":[{"year":2014,"cited_by_count":1}],"updated_date":"2024-12-11T04:59:14.988230","created_date":"2016-06-24"}