{"id":"https://openalex.org/W2127243424","doi":"https://doi.org/10.1109/ijcnn.2008.4634009","title":"CUR+NMF for learning spectral features from large data matrix","display_name":"CUR+NMF for learning spectral features from large data matrix","publication_year":2008,"publication_date":"2008-06-01","ids":{"openalex":"https://openalex.org/W2127243424","doi":"https://doi.org/10.1109/ijcnn.2008.4634009","mag":"2127243424"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2008.4634009","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5102907137","display_name":"Hyekyoung Lee","orcid":"https://orcid.org/0000-0002-3207-7219"},"institutions":[{"id":"https://openalex.org/I123900574","display_name":"Pohang University of Science and Technology","ror":"https://ror.org/04xysgw12","country_code":"KR","type":"education","lineage":["https://openalex.org/I123900574"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"None Hyekyoung Lee","raw_affiliation_strings":["Dept. of Comput. Sci., Pohang Univ. of Sci. & Technol., Pohang"],"affiliations":[{"raw_affiliation_string":"Dept. of Comput. Sci., Pohang Univ. of Sci. & Technol., Pohang","institution_ids":["https://openalex.org/I123900574"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5066405061","display_name":"Seungjin Choi","orcid":"https://orcid.org/0000-0002-7873-4616"},"institutions":[{"id":"https://openalex.org/I123900574","display_name":"Pohang University of Science and Technology","ror":"https://ror.org/04xysgw12","country_code":"KR","type":"education","lineage":["https://openalex.org/I123900574"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"None Seungjin Choi","raw_affiliation_strings":["Dept. of Comput. Sci., Pohang Univ. of Sci. & Technol., Pohang"],"affiliations":[{"raw_affiliation_string":"Dept. of Comput. Sci., Pohang Univ. of Sci. & Technol., Pohang","institution_ids":["https://openalex.org/I123900574"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":10,"citation_normalized_percentile":{"value":0.710287,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":83,"max":84},"biblio":{"volume":"401","issue":null,"first_page":"1592","last_page":"1597"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation and Independent Component Analysis","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation and Independent Component Analysis","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10320","display_name":"Neural Network Fundamentals and Applications","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face Recognition and Dimensionality Reduction Techniques","score":0.9954,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/non-negative-matrix-factorization","display_name":"Non-negative Matrix Factorization","score":0.62019},{"id":"https://openalex.org/keywords/matrix","display_name":"Matrix (chemical analysis)","score":0.5411522},{"id":"https://openalex.org/keywords/signal-decomposition","display_name":"Signal Decomposition","score":0.527239}],"concepts":[{"id":"https://openalex.org/C152671427","wikidata":"https://www.wikidata.org/wiki/Q10843505","display_name":"Non-negative matrix factorization","level":4,"score":0.9697447},{"id":"https://openalex.org/C42355184","wikidata":"https://www.wikidata.org/wiki/Q1361088","display_name":"Matrix decomposition","level":3,"score":0.86523366},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6855065},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6430557},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.58447546},{"id":"https://openalex.org/C106487976","wikidata":"https://www.wikidata.org/wiki/Q685816","display_name":"Matrix (chemical analysis)","level":2,"score":0.5411522},{"id":"https://openalex.org/C124681953","wikidata":"https://www.wikidata.org/wiki/Q339062","display_name":"Decomposition","level":2,"score":0.48482218},{"id":"https://openalex.org/C161584116","wikidata":"https://www.wikidata.org/wiki/Q1952580","display_name":"Multivariate statistics","level":2,"score":0.4261672},{"id":"https://openalex.org/C67186912","wikidata":"https://www.wikidata.org/wiki/Q367664","display_name":"Data modeling","level":2,"score":0.42259306},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.34599596},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.24983832},{"id":"https://openalex.org/C158693339","wikidata":"https://www.wikidata.org/wiki/Q190524","display_name":"Eigenvalues and eigenvectors","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C18903297","wikidata":"https://www.wikidata.org/wiki/Q7150","display_name":"Ecology","level":1,"score":0.0},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2008.4634009","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":31,"referenced_works":["https://openalex.org/W1581174728","https://openalex.org/W1595485256","https://openalex.org/W17583692","https://openalex.org/W1902027874","https://openalex.org/W1970576574","https://openalex.org/W1984035260","https://openalex.org/W1994837583","https://openalex.org/W2003690406","https://openalex.org/W2013029404","https://openalex.org/W2042465463","https://openalex.org/W2056857971","https://openalex.org/W2073502026","https://openalex.org/W2098445696","https://openalex.org/W2101629643","https://openalex.org/W2104298926","https://openalex.org/W2106006415","https://openalex.org/W2113359929","https://openalex.org/W2117852776","https://openalex.org/W2118718620","https://openalex.org/W2125675750","https://openalex.org/W2133651939","https://openalex.org/W2136171036","https://openalex.org/W2136787567","https://openalex.org/W2137573778","https://openalex.org/W2142384583","https://openalex.org/W2144920235","https://openalex.org/W2145673887","https://openalex.org/W2145734611","https://openalex.org/W2146913572","https://openalex.org/W2152886502","https://openalex.org/W3143596294"],"related_works":["https://openalex.org/W4390394189","https://openalex.org/W34555840","https://openalex.org/W2972997031","https://openalex.org/W2792706544","https://openalex.org/W2539013788","https://openalex.org/W2156699640","https://openalex.org/W2146544734","https://openalex.org/W2045265907","https://openalex.org/W2037504162","https://openalex.org/W1568451138"],"abstract_inverted_index":{"Nonnegative":[0],"matrix":[1,31,53],"factorization":[2],"(NMF)":[3],"is":[4,59],"a":[5,29,45],"popular":[6],"method":[7,47],"for":[8],"multivariate":[9],"analysis":[10],"of":[11,28,37,75],"nonnegative":[12],"data.":[13,24],"It":[14],"was":[15],"successfully":[16],"applied":[17],"to":[18],"learn":[19],"spectral":[20],"features":[21],"from":[22,35],"EEG":[23,65],"However,":[25],"the":[26,51,72,76],"size":[27],"data":[30,52,66],"grows,":[32],"NMF":[33,58],"suffers":[34],"'out":[36],"memory'":[38],"problem.":[39],"In":[40],"this":[41],"paper":[42],"we":[43,49],"present":[44],"memory-reduced":[46],"where":[48],"downsize":[50],"using":[54],"CUR":[55],"decomposition":[56],"before":[57],"applied.":[60],"Experimental":[61],"results":[62],"with":[63],"two":[64],"sets":[67],"in":[68],"BCI":[69],"competition,":[70],"confirm":[71],"useful":[73],"behavior":[74],"proposed":[77],"method.":[78]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2127243424","counts_by_year":[{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":1},{"year":2014,"cited_by_count":2},{"year":2013,"cited_by_count":3},{"year":2012,"cited_by_count":2}],"updated_date":"2024-11-21T12:06:53.665264","created_date":"2016-06-24"}