{"id":"https://openalex.org/W2141016811","doi":"https://doi.org/10.1109/ijcnn.2008.4633886","title":"Particle swarm optimization of feedforward neural networks for the detection of drowsy driving","display_name":"Particle swarm optimization of feedforward neural networks for the detection of drowsy driving","publication_year":2008,"publication_date":"2008-06-01","ids":{"openalex":"https://openalex.org/W2141016811","doi":"https://doi.org/10.1109/ijcnn.2008.4633886","mag":"2141016811"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2008.4633886","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5018363666","display_name":"David Sandberg","orcid":null},"institutions":[{"id":"https://openalex.org/I66862912","display_name":"Chalmers University of Technology","ror":"https://ror.org/040wg7k59","country_code":"SE","type":"funder","lineage":["https://openalex.org/I66862912"]}],"countries":["SE"],"is_corresponding":false,"raw_author_name":"David Sandberg","raw_affiliation_strings":["Dept. of Appl. Mech., Chalmers Univ. of Technol., Goteborg"],"affiliations":[{"raw_affiliation_string":"Dept. of Appl. Mech., Chalmers Univ. of Technol., Goteborg","institution_ids":["https://openalex.org/I66862912"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5028236337","display_name":"Mattias Wahde","orcid":"https://orcid.org/0000-0001-6679-637X"},"institutions":[{"id":"https://openalex.org/I66862912","display_name":"Chalmers University of Technology","ror":"https://ror.org/040wg7k59","country_code":"SE","type":"funder","lineage":["https://openalex.org/I66862912"]}],"countries":["SE"],"is_corresponding":false,"raw_author_name":"Mattias Wahde","raw_affiliation_strings":["Dept. of Appl. Mech., Chalmers Univ. of Technol., Goteborg"],"affiliations":[{"raw_affiliation_string":"Dept. of Appl. Mech., Chalmers Univ. of Technol., Goteborg","institution_ids":["https://openalex.org/I66862912"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.114,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":31,"citation_normalized_percentile":{"value":0.893764,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":91,"max":92},"biblio":{"volume":null,"issue":null,"first_page":"788","last_page":"793"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11373","display_name":"Sleep and Work-Related Fatigue","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/3205","display_name":"Experimental and Cognitive Psychology"},"field":{"id":"https://openalex.org/fields/32","display_name":"Psychology"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11373","display_name":"Sleep and Work-Related Fatigue","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/3205","display_name":"Experimental and Cognitive Psychology"},"field":{"id":"https://openalex.org/fields/32","display_name":"Psychology"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T12095","display_name":"Vehicle emissions and performance","score":0.99,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.983,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feedforward-neural-network","display_name":"Feedforward neural network","score":0.6711869}],"concepts":[{"id":"https://openalex.org/C85617194","wikidata":"https://www.wikidata.org/wiki/Q2072794","display_name":"Particle swarm optimization","level":2,"score":0.8083021},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.76565135},{"id":"https://openalex.org/C47702885","wikidata":"https://www.wikidata.org/wiki/Q5441227","display_name":"Feedforward neural network","level":3,"score":0.6711869},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5762968},{"id":"https://openalex.org/C21200559","wikidata":"https://www.wikidata.org/wiki/Q7451068","display_name":"Sensitivity (control systems)","level":2,"score":0.5308339},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.49026588},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.4424483},{"id":"https://openalex.org/C16910744","wikidata":"https://www.wikidata.org/wiki/Q7705759","display_name":"Test data","level":2,"score":0.42666054},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.35284394},{"id":"https://openalex.org/C44154836","wikidata":"https://www.wikidata.org/wiki/Q45045","display_name":"Simulation","level":1,"score":0.33824277},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.3279436},{"id":"https://openalex.org/C24326235","wikidata":"https://www.wikidata.org/wiki/Q126095","display_name":"Electronic engineering","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2008.4633886","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":12,"referenced_works":["https://openalex.org/W116278252","https://openalex.org/W1549508738","https://openalex.org/W1558376262","https://openalex.org/W1977968114","https://openalex.org/W201421746","https://openalex.org/W2100034063","https://openalex.org/W2117190240","https://openalex.org/W2120556078","https://openalex.org/W2152195021","https://openalex.org/W2170131944","https://openalex.org/W4247387102","https://openalex.org/W565781524"],"related_works":["https://openalex.org/W4386596916","https://openalex.org/W4224903346","https://openalex.org/W3019402777","https://openalex.org/W2388590088","https://openalex.org/W2378757965","https://openalex.org/W2372869593","https://openalex.org/W2097519318","https://openalex.org/W2031835531","https://openalex.org/W1969166468","https://openalex.org/W1593262897"],"abstract_inverted_index":{"The":[0,62],"work":[1],"presented":[2],"in":[3,50],"this":[4],"paper":[5],"concerns":[6],"the":[7,51,55,67,76],"detection":[8],"of":[9,17,35,83,87],"drowsy":[10,36],"driving":[11,18,37,52],"based":[12,38],"on":[13,39,90],"time":[14],"series":[15],"measurements":[16],"behavior.":[19],"Artificial":[20],"neural":[21,63],"networks,":[22],"trained":[23],"using":[24],"particle":[25],"swarm":[26],"optimization,":[27],"have":[28],"been":[29],"used":[30],"to":[31],"combine":[32],"several":[33],"indicators":[34,70],"a":[40,45,72,80],"data":[41],"set":[42],"originating":[43],"from":[44],"large":[46],"study":[47],"carried":[48],"out":[49],"simulator":[53],"at":[54],"Swedish":[56],"National":[57],"Road":[58],"and":[59,85],"Transportation":[60],"Institute.":[61],"networks":[64],"obtained":[65],"outperform":[66],"best":[68,77],"individual":[69],"by":[71],"few":[73],"percentage":[74],"points,":[75],"network":[78],"reaching":[79],"performance":[81],"(average":[82],"sensitivity":[84],"specificity)":[86],"around":[88],"75%":[89],"previously":[91],"unseen":[92],"test":[93],"data.":[94]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2141016811","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":2},{"year":2020,"cited_by_count":2},{"year":2019,"cited_by_count":6},{"year":2018,"cited_by_count":5},{"year":2017,"cited_by_count":1},{"year":2016,"cited_by_count":2},{"year":2015,"cited_by_count":3},{"year":2014,"cited_by_count":3},{"year":2013,"cited_by_count":1}],"updated_date":"2025-04-21T03:21:43.802693","created_date":"2016-06-24"}