{"id":"https://openalex.org/W2072258071","doi":"https://doi.org/10.1109/ijcnn.2007.4371224","title":"Classifier Performance Estimation Under the Constraint of a Finite Sample Size: Resampling Schemes Applied to Neural Network Classifiers","display_name":"Classifier Performance Estimation Under the Constraint of a Finite Sample Size: Resampling Schemes Applied to Neural Network Classifiers","publication_year":2007,"publication_date":"2007-08-01","ids":{"openalex":"https://openalex.org/W2072258071","doi":"https://doi.org/10.1109/ijcnn.2007.4371224","mag":"2072258071"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2007.4371224","pdf_url":null,"source":{"id":"https://openalex.org/S4210195743","display_name":"IEEE International Conference on Neural Networks/IEEE ... International Conference on Neural Networks","issn_l":"1098-7576","issn":["1098-7576","1558-3902"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5073468417","display_name":"Berkman Sahiner","orcid":"https://orcid.org/0000-0003-2804-2264"},"institutions":[{"id":"https://openalex.org/I27837315","display_name":"University of Michigan","ror":"https://ror.org/00jmfr291","country_code":"US","type":"funder","lineage":["https://openalex.org/I27837315"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Berkman Sahiner","raw_affiliation_strings":["University of Michigan , Ann Arbor"],"affiliations":[{"raw_affiliation_string":"University of Michigan , Ann Arbor","institution_ids":["https://openalex.org/I27837315"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5027247097","display_name":"Heang\u2010Ping Chan","orcid":"https://orcid.org/0000-0001-7777-9006"},"institutions":[{"id":"https://openalex.org/I27837315","display_name":"University of Michigan","ror":"https://ror.org/00jmfr291","country_code":"US","type":"funder","lineage":["https://openalex.org/I27837315"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Heang-Ping Chan","raw_affiliation_strings":["University of Michigan , Ann Arbor"],"affiliations":[{"raw_affiliation_string":"University of Michigan , Ann Arbor","institution_ids":["https://openalex.org/I27837315"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5087281080","display_name":"Lubomir M. Hadjiiski","orcid":"https://orcid.org/0000-0003-2069-8066"},"institutions":[{"id":"https://openalex.org/I27837315","display_name":"University of Michigan","ror":"https://ror.org/00jmfr291","country_code":"US","type":"funder","lineage":["https://openalex.org/I27837315"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Lubomir Hadjiiski","raw_affiliation_strings":["University of Michigan , Ann Arbor"],"affiliations":[{"raw_affiliation_string":"University of Michigan , Ann Arbor","institution_ids":["https://openalex.org/I27837315"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.502,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":26,"citation_normalized_percentile":{"value":0.846688,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":89,"max":90},"biblio":{"volume":null,"issue":null,"first_page":"1762","last_page":"1766"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9907,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9907,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9882,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.9111,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/resampling","display_name":"Resampling","score":0.76595926},{"id":"https://openalex.org/keywords/bootstrapping","display_name":"Bootstrapping (finance)","score":0.564064},{"id":"https://openalex.org/keywords/margin-classifier","display_name":"Margin classifier","score":0.4879236}],"concepts":[{"id":"https://openalex.org/C150921843","wikidata":"https://www.wikidata.org/wiki/Q1170431","display_name":"Resampling","level":2,"score":0.76595926},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.74655366},{"id":"https://openalex.org/C129848803","wikidata":"https://www.wikidata.org/wiki/Q2564360","display_name":"Sample size determination","level":2,"score":0.69190776},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.63318527},{"id":"https://openalex.org/C111030470","wikidata":"https://www.wikidata.org/wiki/Q1430460","display_name":"Curse of dimensionality","level":2,"score":0.6050903},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5727237},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5715707},{"id":"https://openalex.org/C207609745","wikidata":"https://www.wikidata.org/wiki/Q4944086","display_name":"Bootstrapping (finance)","level":2,"score":0.564064},{"id":"https://openalex.org/C173102733","wikidata":"https://www.wikidata.org/wiki/Q6760396","display_name":"Margin classifier","level":3,"score":0.4879236},{"id":"https://openalex.org/C2908647359","wikidata":"https://www.wikidata.org/wiki/Q2625603","display_name":"Population","level":2,"score":0.4447621},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.44281533},{"id":"https://openalex.org/C19499675","wikidata":"https://www.wikidata.org/wiki/Q232207","display_name":"Monte Carlo method","level":2,"score":0.42935625},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.42552388},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.3212489},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.25188667},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.10959703},{"id":"https://openalex.org/C149923435","wikidata":"https://www.wikidata.org/wiki/Q37732","display_name":"Demography","level":1,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ijcnn.2007.4371224","pdf_url":null,"source":{"id":"https://openalex.org/S4210195743","display_name":"IEEE International Conference on Neural Networks/IEEE ... International Conference on Neural Networks","issn_l":"1098-7576","issn":["1098-7576","1558-3902"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":10,"referenced_works":["https://openalex.org/W1770825568","https://openalex.org/W1890210640","https://openalex.org/W2015056255","https://openalex.org/W2036255459","https://openalex.org/W2040615655","https://openalex.org/W2069401973","https://openalex.org/W2127314075","https://openalex.org/W2135346934","https://openalex.org/W4243562335","https://openalex.org/W4250236131"],"related_works":["https://openalex.org/W69222743","https://openalex.org/W4229900761","https://openalex.org/W3143315574","https://openalex.org/W3117246195","https://openalex.org/W2375771286","https://openalex.org/W2149345204","https://openalex.org/W2081850291","https://openalex.org/W1913467779","https://openalex.org/W156620619","https://openalex.org/W1534274833"],"abstract_inverted_index":{"In":[0],"a":[1,23,36,60,68,85,96,130,201],"practical":[2],"classifier":[3,24,51,88,194],"design":[4,22,49],"problem,":[5],"the":[6,12,28,32,43,50,54,74,82,91,100,102,112,124,134,137,146,154,164,173,191,198],"sample":[7,15,38,155],"size":[8,156],"is":[9,39,46,150,157,180],"limited,":[10],"and":[11,25,57,105,115,153,166],"available":[13,55,92],"finite":[14],"needs":[16],"to":[17,21,26,48,58,72,172],"be":[18,129],"used":[19],"both":[20],"predict":[27],"classifier's":[29],"performance":[30,64,83,195],"for":[31,63,190],"true":[33],"population.":[34],"Since":[35],"larger":[37],"more":[40],"representative":[41],"of":[42,76,84,109,136,162,193,200],"population,":[44],"it":[45,186],"advantageous":[47],"with":[52,90],"all":[53],"cases,":[56],"use":[59],"resampling":[61,78,142],"technique":[62,97],"prediction.":[65],"We":[66,94],"conducted":[67],"Monte-Carlo":[69],"simulation":[70],"study":[71,125],"compare":[73],"ability":[75],"different":[77,107,141],"techniques":[79,175],"in":[80,133],"predicting":[81],"neural":[86],"network":[87],"designed":[89],"sample.":[93],"investigated":[95],"based":[98],"on":[99],"cross-validation,":[101],"leave-one-out":[103],"method,":[104],"three":[106],"types":[108],"bootstrapping,":[110],"namely,":[111],"ordinary,":[113],".632,":[114],".632+":[116,167],"bootstrap":[117,168],"techniques.":[118],"Our":[119],"results":[120],"indicated":[121],"that,":[122],"under":[123,182,197],"conditions,":[126,163,185],"there":[127],"can":[128],"large":[131,152],"difference":[132],"accuracy":[135],"prediction":[138,196],"obtained":[139],"from":[140],"methods,":[143],"especially":[144],"when":[145],"feature":[147],"space":[148],"dimensionality":[149],"relatively":[151],"small.":[158],"Under":[159],"this":[160,178],"type":[161],".632":[165],"methods":[169],"were":[170],"superior":[171],"other":[174],"studied.":[176],"Although":[177],"investigation":[179],"performed":[181],"some":[183],"specific":[184],"reveals":[187],"important":[188],"trends":[189],"problem":[192],"constraint":[199],"limited":[202],"data":[203],"set.":[204]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2072258071","counts_by_year":[{"year":2021,"cited_by_count":2},{"year":2020,"cited_by_count":1},{"year":2018,"cited_by_count":1},{"year":2016,"cited_by_count":2},{"year":2015,"cited_by_count":1},{"year":2013,"cited_by_count":1},{"year":2012,"cited_by_count":4}],"updated_date":"2025-04-15T20:50:47.446491","created_date":"2016-06-24"}