{"id":"https://openalex.org/W4312303699","doi":"https://doi.org/10.1109/igarss46834.2022.9884272","title":"Leveraging convolutional neural networks for semantic segmentation of global floods with PlanetScope imagery","display_name":"Leveraging convolutional neural networks for semantic segmentation of global floods with PlanetScope imagery","publication_year":2022,"publication_date":"2022-07-17","ids":{"openalex":"https://openalex.org/W4312303699","doi":"https://doi.org/10.1109/igarss46834.2022.9884272"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/igarss46834.2022.9884272","pdf_url":null,"source":{"id":"https://openalex.org/S4363604196","display_name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5085461127","display_name":"Nicholas R. Leach","orcid":null},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Nicholas R. Leach","raw_affiliation_strings":["Cloud to Street, Brooklyn, USA"],"affiliations":[{"raw_affiliation_string":"Cloud to Street, Brooklyn, USA","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5085241321","display_name":"Philip Popien","orcid":null},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Philip Popien","raw_affiliation_strings":["Cloud to Street, Brooklyn, USA"],"affiliations":[{"raw_affiliation_string":"Cloud to Street, Brooklyn, USA","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5066203914","display_name":"Maxwell C. Goodman","orcid":null},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Maxwell C. Goodman","raw_affiliation_strings":["Cloud to Street, Brooklyn, USA"],"affiliations":[{"raw_affiliation_string":"Cloud to Street, Brooklyn, USA","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5087383776","display_name":"Beth Tellman","orcid":"https://orcid.org/0000-0003-3026-6435"},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Beth Tellman","raw_affiliation_strings":["Cloud to Street, Brooklyn, USA"],"affiliations":[{"raw_affiliation_string":"Cloud to Street, Brooklyn, USA","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.64,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.535984,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":59,"max":69},"biblio":{"volume":null,"issue":null,"first_page":"314","last_page":"317"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10930","display_name":"Flood Risk Assessment and Management","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2306","display_name":"Global and Planetary Change"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10930","display_name":"Flood Risk Assessment and Management","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2306","display_name":"Global and Planetary Change"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11483","display_name":"Tropical and Extratropical Cyclones Research","score":0.9885,"subfield":{"id":"https://openalex.org/subfields/1902","display_name":"Atmospheric Science"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10330","display_name":"Hydrology and Watershed Management Studies","score":0.9817,"subfield":{"id":"https://openalex.org/subfields/2312","display_name":"Water Science and Technology"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/biome","display_name":"Biome","score":0.44867915}],"concepts":[{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.6428615},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.62759733},{"id":"https://openalex.org/C62649853","wikidata":"https://www.wikidata.org/wiki/Q199687","display_name":"Remote sensing","level":1,"score":0.61213464},{"id":"https://openalex.org/C70352696","wikidata":"https://www.wikidata.org/wiki/Q8928","display_name":"Constellation","level":2,"score":0.5433588},{"id":"https://openalex.org/C74256435","wikidata":"https://www.wikidata.org/wiki/Q134052","display_name":"Flood myth","level":2,"score":0.5117721},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.5055115},{"id":"https://openalex.org/C205372480","wikidata":"https://www.wikidata.org/wiki/Q210521","display_name":"Image resolution","level":2,"score":0.46265513},{"id":"https://openalex.org/C89920630","wikidata":"https://www.wikidata.org/wiki/Q101998","display_name":"Biome","level":3,"score":0.44867915},{"id":"https://openalex.org/C39432304","wikidata":"https://www.wikidata.org/wiki/Q188847","display_name":"Environmental science","level":0,"score":0.4060972},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.350895},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.21125692},{"id":"https://openalex.org/C18903297","wikidata":"https://www.wikidata.org/wiki/Q7150","display_name":"Ecology","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C166957645","wikidata":"https://www.wikidata.org/wiki/Q23498","display_name":"Archaeology","level":1,"score":0.0},{"id":"https://openalex.org/C1276947","wikidata":"https://www.wikidata.org/wiki/Q333","display_name":"Astronomy","level":1,"score":0.0},{"id":"https://openalex.org/C110872660","wikidata":"https://www.wikidata.org/wiki/Q37813","display_name":"Ecosystem","level":2,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/igarss46834.2022.9884272","pdf_url":null,"source":{"id":"https://openalex.org/S4363604196","display_name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Clean water and sanitation","score":0.45,"id":"https://metadata.un.org/sdg/6"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":12,"referenced_works":["https://openalex.org/W1901129140","https://openalex.org/W2101234009","https://openalex.org/W2336807904","https://openalex.org/W2560167313","https://openalex.org/W2605932719","https://openalex.org/W2749751926","https://openalex.org/W2773875735","https://openalex.org/W2963401764","https://openalex.org/W3008439211","https://openalex.org/W3087929000","https://openalex.org/W3140841781","https://openalex.org/W3190581971"],"related_works":["https://openalex.org/W4308191152","https://openalex.org/W4293211451","https://openalex.org/W4226289457","https://openalex.org/W4200528772","https://openalex.org/W3148584990","https://openalex.org/W3102253946","https://openalex.org/W2963940192","https://openalex.org/W2899211859","https://openalex.org/W2769435486","https://openalex.org/W2673946014"],"abstract_inverted_index":{"Constellations":[0],"of":[1,22,50,119,132],"small":[2,51],"satellites":[3,52],"are":[4,104],"able":[5],"to":[6,16,47,56,85,98],"achieve":[7],"the":[8,36,80],"coverage,":[9],"revisit":[10],"rate,":[11],"and":[12,136],"spatial":[13],"resolution":[14,19],"needed":[15],"generate":[17],"high":[18],"global":[20,58],"maps":[21],"flood":[23,59,108],"waters.":[24],"The":[25,110],"PlanetScope":[26,71],"constellation":[27],"achieves":[28,112],"daily":[29],"coverage":[30],"at":[31],"3\u20134":[32],"m":[33],"resolution;":[34],"however,":[35],"limited":[37],"spectral":[38],"channels":[39],"available":[40],"as":[41,43],"well":[42],"radiometric":[44],"challenges":[45],"inherent":[46],"large":[48],"constellations":[49],"create":[53,86],"a":[54,64,87,113],"challenge":[55],"accurate":[57],"mapping.":[60,109],"Here,":[61],"we":[62],"present":[63],"convolutional":[65],"neural":[66],"network":[67],"(CNN)":[68],"which":[69,103],"combines":[70],"imagery":[72],"with":[73],"information":[74],"about":[75],"multidecadal":[76],"water":[77,90,134,144],"dynamics":[78],"from":[79],"Global":[81],"Surface":[82],"Water":[83],"dataset":[84],"globally":[88],"applicable":[89],"segmentation":[91],"model.":[92],"We":[93],"also":[94],"compare":[95],"this":[96],"model":[97],"locally-trained":[99],"Random":[100],"Forest":[101],"models,":[102],"commonly":[105],"used":[106],"for":[107],"CNN":[111],"mean":[114],"intersection":[115],"over":[116],"union":[117],"score":[118],"58.1%":[120],"\u00b1":[121,138],"9.84%":[122],"across":[123],"7":[124],"biomes":[125],"when":[126,140],"evaluated":[127,141],"on":[128,142],"flooded":[129],"areas":[130],"outside":[131],"permanent":[133],"bodies,":[135],"70.3%":[137],"11.6%":[139],"all":[143],"pixels.":[145]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4312303699","counts_by_year":[{"year":2024,"cited_by_count":1}],"updated_date":"2025-04-21T09:30:30.347236","created_date":"2023-01-04"}