{"id":"https://openalex.org/W4312869499","doi":"https://doi.org/10.1109/igarss46834.2022.9883668","title":"A Universal Adversarial Attack on CNN-SAR Image Classification by Feature Dictionary Modeling","display_name":"A Universal Adversarial Attack on CNN-SAR Image Classification by Feature Dictionary Modeling","publication_year":2022,"publication_date":"2022-07-17","ids":{"openalex":"https://openalex.org/W4312869499","doi":"https://doi.org/10.1109/igarss46834.2022.9883668"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/igarss46834.2022.9883668","pdf_url":null,"source":{"id":"https://openalex.org/S4363604196","display_name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5081843417","display_name":"Weibo Qin","orcid":"https://orcid.org/0000-0002-6771-3617"},"institutions":[{"id":"https://openalex.org/I24943067","display_name":"Fudan University","ror":"https://ror.org/013q1eq08","country_code":"CN","type":"education","lineage":["https://openalex.org/I24943067"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wei-Bo Qin","raw_affiliation_strings":["School of Information Science and Technology, Fudan University,Key laboratory for Information Science of Electromagnetic Waves (MoE),Shanghai,China,200433"],"affiliations":[{"raw_affiliation_string":"School of Information Science and Technology, Fudan University,Key laboratory for Information Science of Electromagnetic Waves (MoE),Shanghai,China,200433","institution_ids":["https://openalex.org/I24943067"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100431126","display_name":"Feng Wang","orcid":"https://orcid.org/0000-0001-6940-1353"},"institutions":[{"id":"https://openalex.org/I24943067","display_name":"Fudan University","ror":"https://ror.org/013q1eq08","country_code":"CN","type":"education","lineage":["https://openalex.org/I24943067"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Feng Wang","raw_affiliation_strings":["School of Information Science and Technology, Fudan University,Key laboratory for Information Science of Electromagnetic Waves (MoE),Shanghai,China,200433"],"affiliations":[{"raw_affiliation_string":"School of Information Science and Technology, Fudan University,Key laboratory for Information Science of Electromagnetic Waves (MoE),Shanghai,China,200433","institution_ids":["https://openalex.org/I24943067"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.464,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.53674,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":79},"biblio":{"volume":null,"issue":null,"first_page":"1027","last_page":"1030"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11515","display_name":"Bacillus and Francisella bacterial research","score":0.992,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T11699","display_name":"High-Velocity Impact and Material Behavior","score":0.9178,"subfield":{"id":"https://openalex.org/subfields/2505","display_name":"Materials Chemistry"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/contextual-image-classification","display_name":"Contextual image classification","score":0.58048445},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.53220767}],"concepts":[{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.79261696},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7767349},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.75321114},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.7277713},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.62516594},{"id":"https://openalex.org/C87360688","wikidata":"https://www.wikidata.org/wiki/Q740686","display_name":"Synthetic aperture radar","level":2,"score":0.62511945},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.6169888},{"id":"https://openalex.org/C75294576","wikidata":"https://www.wikidata.org/wiki/Q5165192","display_name":"Contextual image classification","level":3,"score":0.58048445},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.53220767},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.48843923},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.47505593},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.44681552},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/igarss46834.2022.9883668","pdf_url":null,"source":{"id":"https://openalex.org/S4363604196","display_name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320309612","funder_display_name":"Natural Science Foundation of Shanghai","award_id":"20ZR1406300"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61901122,61901122"}],"datasets":[],"versions":[],"referenced_works_count":11,"referenced_works":["https://openalex.org/W1932198206","https://openalex.org/W2243397390","https://openalex.org/W2292481059","https://openalex.org/W2410591237","https://openalex.org/W2951133631","https://openalex.org/W2963178695","https://openalex.org/W3103557498","https://openalex.org/W3127159478","https://openalex.org/W3206904477","https://openalex.org/W4288618201","https://openalex.org/W4320013936"],"related_works":["https://openalex.org/W4246396837","https://openalex.org/W4210966920","https://openalex.org/W3126451824","https://openalex.org/W2565656575","https://openalex.org/W2550009779","https://openalex.org/W2502115930","https://openalex.org/W2482350142","https://openalex.org/W2156233651","https://openalex.org/W2005234362","https://openalex.org/W1997235926"],"abstract_inverted_index":{"Synthetic":[0],"aperture":[1],"radar":[2],"(SAR)":[3],"image":[4,91],"classification":[5],"with":[6,68],"deep":[7],"learning":[8],"methods":[9,63],"has":[10],"achieved":[11],"high":[12],"accuracy":[13],"on":[14,53,89,98,113],"a":[15,36,85],"variety":[16],"of":[17,23,50,71,109,116],"scenes.":[18],"Despite":[19],"the":[20,26,40,69],"excellent":[21],"performance":[22],"new":[24],"methods,":[25],"phenomenon":[27],"that":[28,120],"small":[29],"perturbations":[30],"in":[31,39,79],"data":[32,115],"might":[33],"lead":[34],"to":[35,44],"sharp":[37],"change":[38],"result,":[41],"raises":[42],"attention":[43],"these":[45,62],"black":[46],"architectures.":[47],"Increasing":[48],"number":[49],"adversarial":[51,66,87],"attacks":[52],"convolutional":[54],"neural":[55],"network":[56],"(CNN)":[57],"have":[58],"been":[59],"proposed,":[60],"while":[61],"construct":[64],"their":[65],"examples":[67],"aid":[70],"corresponding":[72],"classifiers.":[73],"Such":[74],"condition":[75],"cannot":[76],"be":[77],"realized":[78],"actual":[80],"confrontation.":[81],"Therefore,":[82],"we":[83],"introduce":[84],"universal":[86],"attack":[88],"CNN-SAR":[90],"classification.":[92],"In":[93],"essence,":[94],"this":[95,121],"method":[96,123],"focuses":[97],"distinguishing":[99],"target":[100],"distribution":[101],"by":[102],"feature":[103],"dictionary":[104],"modeling,":[105],"excluding":[106],"prior":[107],"knowledge":[108],"any":[110],"classifier.":[111],"Experiments":[112],"simulated":[114],"plane":[117],"models":[118],"indicate":[119],"proposed":[122],"works":[124],"well":[125],"at":[126],"various":[127],"typical":[128],"CNNs.":[129]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4312869499","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":1}],"updated_date":"2025-01-21T14:28:42.271157","created_date":"2023-01-05"}