{"id":"https://openalex.org/W4312270744","doi":"https://doi.org/10.1109/igarss46834.2022.9883408","title":"Efficient Hyperspectral Imagery Classification Method with Lightweight Structure and Image Transformation-Based Data Augmentation","display_name":"Efficient Hyperspectral Imagery Classification Method with Lightweight Structure and Image Transformation-Based Data Augmentation","publication_year":2022,"publication_date":"2022-07-17","ids":{"openalex":"https://openalex.org/W4312270744","doi":"https://doi.org/10.1109/igarss46834.2022.9883408"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/igarss46834.2022.9883408","pdf_url":null,"source":{"id":"https://openalex.org/S4363604196","display_name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5037062058","display_name":"Denis Ivanitsa","orcid":null},"institutions":[{"id":"https://openalex.org/I17145004","display_name":"Northwestern Polytechnical University","ror":"https://ror.org/01y0j0j86","country_code":"CN","type":"education","lineage":["https://openalex.org/I17145004"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Denis Ivanitsa","raw_affiliation_strings":["School of Computer Science, Northwestern Polytehnical University,Xi'an,China,710072"],"affiliations":[{"raw_affiliation_string":"School of Computer Science, Northwestern Polytehnical University,Xi'an,China,710072","institution_ids":["https://openalex.org/I17145004"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100323672","display_name":"Wei Wei","orcid":"https://orcid.org/0000-0002-0655-056X"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wei Wei","raw_affiliation_strings":["Research & Development Institute of Northwestern Polytehnical University in Shenzhen,Shenzhen,China,518057"],"affiliations":[{"raw_affiliation_string":"Research & Development Institute of Northwestern Polytehnical University in Shenzhen,Shenzhen,China,518057","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.643,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.808867,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":80,"max":83},"biblio":{"volume":null,"issue":null,"first_page":"3560","last_page":"3563"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13890","display_name":"Remote Sensing and Land Use","score":0.9958,"subfield":{"id":"https://openalex.org/subfields/1902","display_name":"Atmospheric Science"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11659","display_name":"Advanced Image Fusion Techniques","score":0.9907,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/hyperspectral-imaging","display_name":"Hyperspectral Imaging","score":0.552},{"id":"https://openalex.org/keywords/contextual-image-classification","display_name":"Contextual image classification","score":0.53529674},{"id":"https://openalex.org/keywords/hyperspectral","display_name":"Hyperspectral","score":0.530192},{"id":"https://openalex.org/keywords/support-vector-machines","display_name":"Support Vector Machines","score":0.517545},{"id":"https://openalex.org/keywords/change-detection","display_name":"Change Detection","score":0.504808},{"id":"https://openalex.org/keywords/image-analysis","display_name":"Image Analysis","score":0.504266},{"id":"https://openalex.org/keywords/flops","display_name":"FLOPS","score":0.46142298},{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.4562323}],"concepts":[{"id":"https://openalex.org/C159078339","wikidata":"https://www.wikidata.org/wiki/Q959005","display_name":"Hyperspectral imaging","level":2,"score":0.8064588},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7680596},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6932063},{"id":"https://openalex.org/C75294576","wikidata":"https://www.wikidata.org/wiki/Q5165192","display_name":"Contextual image classification","level":3,"score":0.53529674},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.52223},{"id":"https://openalex.org/C204241405","wikidata":"https://www.wikidata.org/wiki/Q461499","display_name":"Transformation (genetics)","level":3,"score":0.52031064},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5002012},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.494247},{"id":"https://openalex.org/C106301342","wikidata":"https://www.wikidata.org/wiki/Q4117933","display_name":"Entropy (arrow of time)","level":2,"score":0.4938689},{"id":"https://openalex.org/C3826847","wikidata":"https://www.wikidata.org/wiki/Q188768","display_name":"FLOPS","level":2,"score":0.46142298},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.4562323},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.41033718},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.36640885},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.10527158},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/igarss46834.2022.9883408","pdf_url":null,"source":{"id":"https://openalex.org/S4363604196","display_name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":8,"referenced_works":["https://openalex.org/W2342045095","https://openalex.org/W2764276316","https://openalex.org/W2765407302","https://openalex.org/W2767805377","https://openalex.org/W2941387379","https://openalex.org/W3006984222","https://openalex.org/W3035414587","https://openalex.org/W3122817280"],"related_works":["https://openalex.org/W4315697128","https://openalex.org/W4313014865","https://openalex.org/W4230131218","https://openalex.org/W3209970181","https://openalex.org/W3034375524","https://openalex.org/W2072166414","https://openalex.org/W2070598848","https://openalex.org/W2060875994","https://openalex.org/W2044184146","https://openalex.org/W2019190440"],"abstract_inverted_index":{"With":[0],"the":[1,9,66,104,156,159,167],"increasing":[2],"popularity":[3],"of":[4,43,69,106,112,158],"deep":[5],"learning":[6],"models":[7,45],"in":[8,26,33,49],"hyperspectral":[10],"image":[11,131],"(HSI)":[12],"classification":[13,147,162],"field,":[14],"more":[15,17],"and":[16,36,71,114],"complex":[18],"methods":[19],"have":[20],"been":[21],"proposed.":[22],"However,":[23],"an":[24,31,95],"increase":[25,32,103],"accuracy":[27],"was":[28],"accompanied":[29],"by":[30],"model":[34,78],"size":[35],"computational":[37],"complexity.":[38],"As":[39],"a":[40,60,76,84,110,125],"result,":[41],"application":[42],"these":[44],"will":[46],"be":[47],"limited":[48,61],"solutions":[50,58],"with":[51,59,138],"strict":[52],"hardware":[53],"specifications,":[54],"as":[55,57],"well":[56],"training":[62],"set.":[63],"To":[64,101],"reduce":[65],"required":[67],"number":[68],"parameters":[70],"total":[72],"FLOPs,":[73],"we":[74,88,123],"design":[75,124],"lightweight":[77,135],"for":[79,120],"HSI":[80,146,153,161],"classification,":[81],"based":[82,129],"on":[83,130,151],"ghost":[85,91],"module.":[86],"Specifically,":[87],"use":[89],"3D":[90],"modules":[92],"to":[93,144,166],"build":[94],"efficient":[96],"3D-CNN":[97],"network":[98],"termed":[99],"TinyNet.":[100],"further":[102],"performance":[105],"our":[107,139],"TinyNet":[108],"model,":[109,136],"combination":[111],"cross-entropy":[113],"contrastive":[115],"center":[116],"loss":[117],"is":[118],"utilized":[119],"training.":[121],"Additionally,":[122],"novel":[126],"augmentation":[127,140],"technique":[128],"transformations.":[132],"The":[133],"proposed":[134,160],"together":[137],"technique,":[141],"can":[142],"lead":[143],"satisfactory":[145],"results.":[148],"Experimental":[149],"results":[150],"two":[152],"datasets":[154],"demonstrate":[155],"effectiveness":[157],"method":[163],"when":[164],"compared":[165],"competing":[168],"techniques.":[169]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4312270744","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":1}],"updated_date":"2024-12-05T10:28:51.987323","created_date":"2023-01-04"}