{"id":"https://openalex.org/W2984298964","doi":"https://doi.org/10.1109/igarss.2019.8898367","title":"Optical Remote Sensing Water-Land Segmentation Representation Based on Proposed SNS-CNN Network","display_name":"Optical Remote Sensing Water-Land Segmentation Representation Based on Proposed SNS-CNN Network","publication_year":2019,"publication_date":"2019-07-01","ids":{"openalex":"https://openalex.org/W2984298964","doi":"https://doi.org/10.1109/igarss.2019.8898367","mag":"2984298964"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/igarss.2019.8898367","pdf_url":null,"source":{"id":"https://openalex.org/S4363604196","display_name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5049266422","display_name":"Shan Dong","orcid":"https://orcid.org/0000-0003-1894-7449"},"institutions":[{"id":"https://openalex.org/I75689368","display_name":"Communication University of China","ror":"https://ror.org/04facbs33","country_code":"CN","type":"education","lineage":["https://openalex.org/I75689368"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shan Dong","raw_affiliation_strings":["Engineering Center of Digital Audio and Video, Communication University of China, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Engineering Center of Digital Audio and Video, Communication University of China, Beijing, China","institution_ids":["https://openalex.org/I75689368"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100878802","display_name":"Long Pang","orcid":null},"institutions":[{"id":"https://openalex.org/I75689368","display_name":"Communication University of China","ror":"https://ror.org/04facbs33","country_code":"CN","type":"education","lineage":["https://openalex.org/I75689368"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Long Pang","raw_affiliation_strings":["Engineering Center of Digital Audio and Video, Communication University of China, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Engineering Center of Digital Audio and Video, Communication University of China, Beijing, China","institution_ids":["https://openalex.org/I75689368"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5023179941","display_name":"Yin Zhuang","orcid":"https://orcid.org/0000-0002-0443-1081"},"institutions":[{"id":"https://openalex.org/I20231570","display_name":"Peking University","ror":"https://ror.org/02v51f717","country_code":"CN","type":"education","lineage":["https://openalex.org/I20231570"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yin Zhuang","raw_affiliation_strings":["School of Electronic Engineering and Computer Science, Peking University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"School of Electronic Engineering and Computer Science, Peking University, Beijing, China","institution_ids":["https://openalex.org/I20231570"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100381718","display_name":"Wenchao Liu","orcid":"https://orcid.org/0000-0001-7747-523X"},"institutions":[{"id":"https://openalex.org/I125839683","display_name":"Beijing Institute of Technology","ror":"https://ror.org/01skt4w74","country_code":"CN","type":"education","lineage":["https://openalex.org/I125839683","https://openalex.org/I890469752"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wenchao Liu","raw_affiliation_strings":["Beijing Key Laboratory of Embedded Real-time Information Processing Technology, Beijing Institute of Technology, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Beijing Key Laboratory of Embedded Real-time Information Processing Technology, Beijing Institute of Technology, Beijing, China","institution_ids":["https://openalex.org/I125839683"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5010301043","display_name":"Zhanxin Yang","orcid":null},"institutions":[{"id":"https://openalex.org/I75689368","display_name":"Communication University of China","ror":"https://ror.org/04facbs33","country_code":"CN","type":"education","lineage":["https://openalex.org/I75689368"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhanxin Yang","raw_affiliation_strings":["Engineering Center of Digital Audio and Video, Communication University of China, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Engineering Center of Digital Audio and Video, Communication University of China, Beijing, China","institution_ids":["https://openalex.org/I75689368"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5061320390","display_name":"Teng Long","orcid":"https://orcid.org/0000-0003-3519-7790"},"institutions":[{"id":"https://openalex.org/I75689368","display_name":"Communication University of China","ror":"https://ror.org/04facbs33","country_code":"CN","type":"education","lineage":["https://openalex.org/I75689368"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Teng Long","raw_affiliation_strings":["Engineering Center of Digital Audio and Video, Communication University of China, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Engineering Center of Digital Audio and Video, Communication University of China, Beijing, China","institution_ids":["https://openalex.org/I75689368"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.552,"has_fulltext":false,"cited_by_count":10,"citation_normalized_percentile":{"value":0.731678,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":85,"max":86},"biblio":{"volume":null,"issue":null,"first_page":"3895","last_page":"3898"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11164","display_name":"Remote Sensing and LiDAR Applications","score":0.9915,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11164","display_name":"Remote Sensing and LiDAR Applications","score":0.9915,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11019","display_name":"Image Enhancement Techniques","score":0.9912,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10930","display_name":"Flood Risk Assessment and Management","score":0.9886,"subfield":{"id":"https://openalex.org/subfields/2306","display_name":"Global and Planetary Change"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.5283029},{"id":"https://openalex.org/keywords/land-cover","display_name":"Land Cover","score":0.4855468},{"id":"https://openalex.org/keywords/margin","display_name":"Margin (machine learning)","score":0.42537537},{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.41237277}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.75443894},{"id":"https://openalex.org/C62649853","wikidata":"https://www.wikidata.org/wiki/Q199687","display_name":"Remote sensing","level":1,"score":0.689747},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.649866},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.57773966},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.56217957},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.5283029},{"id":"https://openalex.org/C2780648208","wikidata":"https://www.wikidata.org/wiki/Q3001793","display_name":"Land cover","level":3,"score":0.4855468},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.43327624},{"id":"https://openalex.org/C774472","wikidata":"https://www.wikidata.org/wiki/Q6760393","display_name":"Margin (machine learning)","level":2,"score":0.42537537},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.42366317},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.41237277},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.39275208},{"id":"https://openalex.org/C4792198","wikidata":"https://www.wikidata.org/wiki/Q1165944","display_name":"Land use","level":2,"score":0.2429663},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.15151489},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.12036064},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C147176958","wikidata":"https://www.wikidata.org/wiki/Q77590","display_name":"Civil engineering","level":1,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/igarss.2019.8898367","pdf_url":null,"source":{"id":"https://openalex.org/S4363604196","display_name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/6","display_name":"Clean water and sanitation","score":0.7}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":8,"referenced_works":["https://openalex.org/W1901129140","https://openalex.org/W2003059629","https://openalex.org/W2186928867","https://openalex.org/W2565813159","https://openalex.org/W2603731349","https://openalex.org/W2742726632","https://openalex.org/W2789732405","https://openalex.org/W2965299469"],"related_works":["https://openalex.org/W2613186388","https://openalex.org/W2517104666","https://openalex.org/W2134924024","https://openalex.org/W2110230079","https://openalex.org/W2023558673","https://openalex.org/W2008656436","https://openalex.org/W2005437358","https://openalex.org/W1982826852","https://openalex.org/W1967061043","https://openalex.org/W1669643531"],"abstract_inverted_index":{"For":[0],"water":[1,66,108,134],"resource":[2],"analysis":[3],"applications,":[4],"due":[5],"to":[6,63,84,106,129],"very":[7],"high":[8],"resolution":[9],"and":[10,34],"large":[11,42],"observation":[12],"scope,":[13],"optical":[14,27,54,145],"remote":[15,28,55,146],"sensing":[16,29,56,147],"images":[17,30,57,148],"can":[18,157],"present":[19],"more":[20,136],"visible":[21],"object":[22],"characters.":[23],"Water-land":[24],"segmentation":[25,52,87,155],"from":[26,53,70],"is":[31,104,123],"wildly":[32],"used":[33],"becomes":[35,58],"a":[36,59,77,113],"hot":[37],"research":[38],"topic.":[39],"However,":[40],"since":[41],"scale":[43],"complex":[44,71],"background":[45],"scenes":[46],"include":[47],"many":[48],"interferences,":[49],"the":[50,85,94,97,126,131,164],"water-land":[51,86,154],"challenge":[60],"task.":[61],"Aim":[62],"achieve":[64],"better":[65,159],"area":[67,109],"feature":[68,110],"description":[69],"land":[72],"cover":[73],"background,":[74],"we":[75],"apply":[76],"sub-neighbor":[78,115],"system":[79,116],"convolutional":[80],"neural":[81],"network":[82],"(SNS-CNN)":[83],"in":[88],"harbor":[89],"scene":[90],"areas.":[91],"First,":[92],"on":[93,140],"basis":[95],"of":[96,118,144,163],"U-net":[98],"structure,":[99],"an":[100],"optimized":[101],"up-sampling":[102],"process":[103],"proposed":[105,153],"enhance":[107],"expression.":[111],"Second,":[112],"novel":[114],"constraint":[117],"each":[119],"predicted":[120],"pixel":[121],"point":[122],"leaded":[124],"into":[125],"loss":[127],"function":[128],"make":[130],"model":[132],"producing":[133],"mask":[135],"coherent.":[137],"Furthermore,":[138],"experiments":[139],"our":[141],"collected":[142],"variety":[143],"demonstrate":[149],"that":[150],"this":[151],"paper":[152],"method":[156],"produce":[158],"performance":[160],"than":[161],"state":[162],"art":[165],"methods.":[166]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2984298964","counts_by_year":[{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":5},{"year":2021,"cited_by_count":1}],"updated_date":"2024-12-12T20:04:49.426230","created_date":"2019-11-22"}