{"id":"https://openalex.org/W2900780912","doi":"https://doi.org/10.1109/igarss.2018.8519213","title":"Hyperspectral Image Super-Resolution via Local Low-Rank and Sparse Representations","display_name":"Hyperspectral Image Super-Resolution via Local Low-Rank and Sparse Representations","publication_year":2018,"publication_date":"2018-07-01","ids":{"openalex":"https://openalex.org/W2900780912","doi":"https://doi.org/10.1109/igarss.2018.8519213","mag":"2900780912"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/igarss.2018.8519213","pdf_url":null,"source":{"id":"https://openalex.org/S4363604196","display_name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5026156663","display_name":"Renwei Dian","orcid":"https://orcid.org/0000-0001-9197-6292"},"institutions":[{"id":"https://openalex.org/I4210120471","display_name":"Instituto de Telecomunica\u00e7\u00f5es","ror":"https://ror.org/02ht4fk33","country_code":"PT","type":"nonprofit","lineage":["https://openalex.org/I4210120471"]},{"id":"https://openalex.org/I141596103","display_name":"University of Lisbon","ror":"https://ror.org/01c27hj86","country_code":"PT","type":"funder","lineage":["https://openalex.org/I141596103"]}],"countries":["PT"],"is_corresponding":false,"raw_author_name":"Renwei Dian","raw_affiliation_strings":["Instituto de Telecomunicac\u00f5es, Universidade de Lisboa, Lisbon, Portugal"],"affiliations":[{"raw_affiliation_string":"Instituto de Telecomunicac\u00f5es, Universidade de Lisboa, Lisbon, Portugal","institution_ids":["https://openalex.org/I4210120471","https://openalex.org/I141596103"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5067097659","display_name":"Shutao Li","orcid":"https://orcid.org/0000-0002-0585-9848"},"institutions":[{"id":"https://openalex.org/I16609230","display_name":"Hunan University","ror":"https://ror.org/05htk5m33","country_code":"CN","type":"funder","lineage":["https://openalex.org/I16609230"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shutao Li","raw_affiliation_strings":["College of Electrical and Information Engineering, Hunan University, Changsha, China"],"affiliations":[{"raw_affiliation_string":"College of Electrical and Information Engineering, Hunan University, Changsha, China","institution_ids":["https://openalex.org/I16609230"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5065061505","display_name":"Leyuan Fang","orcid":"https://orcid.org/0000-0003-2351-4461"},"institutions":[{"id":"https://openalex.org/I16609230","display_name":"Hunan University","ror":"https://ror.org/05htk5m33","country_code":"CN","type":"funder","lineage":["https://openalex.org/I16609230"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Leyuan Fang","raw_affiliation_strings":["College of Electrical and Information Engineering, Hunan University, Changsha, China"],"affiliations":[{"raw_affiliation_string":"College of Electrical and Information Engineering, Hunan University, Changsha, China","institution_ids":["https://openalex.org/I16609230"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5017508063","display_name":"Jos\u00e9 M. Bioucas\u2010Dias","orcid":"https://orcid.org/0000-0002-0166-5149"},"institutions":[{"id":"https://openalex.org/I4210120471","display_name":"Instituto de Telecomunica\u00e7\u00f5es","ror":"https://ror.org/02ht4fk33","country_code":"PT","type":"nonprofit","lineage":["https://openalex.org/I4210120471"]},{"id":"https://openalex.org/I141596103","display_name":"University of Lisbon","ror":"https://ror.org/01c27hj86","country_code":"PT","type":"funder","lineage":["https://openalex.org/I141596103"]}],"countries":["PT"],"is_corresponding":false,"raw_author_name":"Jose Bioucas-Dias","raw_affiliation_strings":["Instituto de Telecomunicac\u00f5es, Universidade de Lisboa, Lisbon, Portugal"],"affiliations":[{"raw_affiliation_string":"Instituto de Telecomunicac\u00f5es, Universidade de Lisboa, Lisbon, Portugal","institution_ids":["https://openalex.org/I4210120471","https://openalex.org/I141596103"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":4.23,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":29,"citation_normalized_percentile":{"value":0.853079,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":null,"issue":null,"first_page":"4003","last_page":"4006"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11659","display_name":"Advanced Image Fusion Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11659","display_name":"Advanced Image Fusion Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization","score":0.643591},{"id":"https://openalex.org/keywords/rank","display_name":"Rank (graph theory)","score":0.43370554}],"concepts":[{"id":"https://openalex.org/C159078339","wikidata":"https://www.wikidata.org/wiki/Q959005","display_name":"Hyperspectral imaging","level":2,"score":0.79720455},{"id":"https://openalex.org/C205372480","wikidata":"https://www.wikidata.org/wiki/Q210521","display_name":"Image resolution","level":2,"score":0.6789644},{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.643591},{"id":"https://openalex.org/C173163844","wikidata":"https://www.wikidata.org/wiki/Q1761440","display_name":"Multispectral image","level":2,"score":0.6306145},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.58652467},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5339374},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.52442086},{"id":"https://openalex.org/C141239990","wikidata":"https://www.wikidata.org/wiki/Q957423","display_name":"Superresolution","level":3,"score":0.47467136},{"id":"https://openalex.org/C69744172","wikidata":"https://www.wikidata.org/wiki/Q860822","display_name":"Image fusion","level":3,"score":0.46208},{"id":"https://openalex.org/C164226766","wikidata":"https://www.wikidata.org/wiki/Q7293202","display_name":"Rank (graph theory)","level":2,"score":0.43370554},{"id":"https://openalex.org/C135252773","wikidata":"https://www.wikidata.org/wiki/Q1567213","display_name":"Inverse problem","level":2,"score":0.43131542},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.4024827},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.37748915},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.36307573},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/igarss.2018.8519213","pdf_url":null,"source":{"id":"https://openalex.org/S4363604196","display_name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":17,"referenced_works":["https://openalex.org/W1990231296","https://openalex.org/W2021046129","https://openalex.org/W2087263574","https://openalex.org/W2092116045","https://openalex.org/W2097259623","https://openalex.org/W2103192805","https://openalex.org/W2123031198","https://openalex.org/W2130835014","https://openalex.org/W2135431554","https://openalex.org/W2159269332","https://openalex.org/W2194818953","https://openalex.org/W2221899823","https://openalex.org/W2327302159","https://openalex.org/W3102912004","https://openalex.org/W3106359998","https://openalex.org/W54434497","https://openalex.org/W817971873"],"related_works":["https://openalex.org/W4391030644","https://openalex.org/W4318664220","https://openalex.org/W4205174160","https://openalex.org/W3209970181","https://openalex.org/W2988577871","https://openalex.org/W2072166414","https://openalex.org/W2060875994","https://openalex.org/W2022304901","https://openalex.org/W2018850895","https://openalex.org/W1987483041"],"abstract_inverted_index":{"Remotely":[0],"sensed":[1],"hyperspectral":[2],"images":[3],"(HSIs)":[4],"usually":[5],"have":[6],"high":[7,40],"spectral":[8,72,113],"resolution":[9,20,35,42],"but":[10],"low":[11,33],"spatial":[12,19,34,41,101],"resolution.":[13],"A":[14],"way":[15],"to":[16,24,140],"increase":[17],"the":[18,47,64,68,75,78,100,112,121,141],"of":[21,46,70],"HSIs":[22],"is":[23,127,136],"solve":[25],"a":[26,32,39,55,71,92],"fusion":[27,65],"inverse":[28],"problem,":[29],"which":[30,62,96],"fuses":[31],"HSI":[36,57],"(LR-HSI)":[37],"with":[38,129,138],"multispectral":[43],"image":[44],"(HR-MSI)":[45],"same":[48],"scene.":[49],"In":[50],"this":[51],"paper,":[52],"we":[53],"propose":[54],"novel":[56],"super-resolution":[58],"approach":[59],"(called":[60],"LRSR),":[61],"formulates":[63],"problem":[66,95],"as":[67],"estimation":[69],"dictionary":[73],"from":[74,82],"LR-HSI":[76],"and":[77,104],"respective":[79],"regression":[80,86,106],"coefficients":[81,87],"both":[83],"images.":[84],"The":[85,108,123],"are":[88,115,117],"estimated":[89,118],"by":[90,119],"formulating":[91],"variational":[93],"regularization":[94],"promotes":[97],"local":[98,109],"(in":[99],"sense)":[102],"low-rank":[103],"sparse":[105],"coefficients.":[107],"regions,":[110],"where":[111],"vectors":[114],"low-rank,":[116],"segmenting":[120],"HR-MSI.":[122],"formulated":[124],"convex":[125],"optimization":[126],"solved":[128],"SALSA.":[130],"Experiments":[131],"provide":[132],"evidence":[133],"that":[134],"LRSR":[135],"competitive":[137],"respect":[139],"state-of-the-art":[142],"methods.":[143]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2900780912","counts_by_year":[{"year":2024,"cited_by_count":5},{"year":2023,"cited_by_count":8},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":10},{"year":2020,"cited_by_count":3}],"updated_date":"2025-04-20T14:22:17.869518","created_date":"2018-11-29"}