{"id":"https://openalex.org/W2901715667","doi":"https://doi.org/10.1109/igarss.2018.8517914","title":"Covariance Matrix Based Feature Fusion for Scene Classification","display_name":"Covariance Matrix Based Feature Fusion for Scene Classification","publication_year":2018,"publication_date":"2018-07-01","ids":{"openalex":"https://openalex.org/W2901715667","doi":"https://doi.org/10.1109/igarss.2018.8517914","mag":"2901715667"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/igarss.2018.8517914","pdf_url":null,"source":{"id":"https://openalex.org/S4363604196","display_name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5057842658","display_name":"Nanjun He","orcid":"https://orcid.org/0000-0003-3105-6499"},"institutions":[{"id":"https://openalex.org/I80606768","display_name":"Universidad de Extremadura","ror":"https://ror.org/0174shg90","country_code":"ES","type":"funder","lineage":["https://openalex.org/I80606768"]}],"countries":["ES"],"is_corresponding":false,"raw_author_name":"Nanjun He","raw_affiliation_strings":["Department of Technology of Computers and Communications, University of Extremadura, Spain"],"affiliations":[{"raw_affiliation_string":"Department of Technology of Computers and Communications, University of Extremadura, Spain","institution_ids":["https://openalex.org/I80606768"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5065061505","display_name":"Leyuan Fang","orcid":"https://orcid.org/0000-0003-2351-4461"},"institutions":[{"id":"https://openalex.org/I16609230","display_name":"Hunan University","ror":"https://ror.org/05htk5m33","country_code":"CN","type":"funder","lineage":["https://openalex.org/I16609230"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Leyuan Fang","raw_affiliation_strings":["College of Electrical and Information Engineering, Hunan University, China"],"affiliations":[{"raw_affiliation_string":"College of Electrical and Information Engineering, Hunan University, China","institution_ids":["https://openalex.org/I16609230"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5067097659","display_name":"Shutao Li","orcid":"https://orcid.org/0000-0002-0585-9848"},"institutions":[{"id":"https://openalex.org/I16609230","display_name":"Hunan University","ror":"https://ror.org/05htk5m33","country_code":"CN","type":"funder","lineage":["https://openalex.org/I16609230"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shutao Li","raw_affiliation_strings":["College of Electrical and Information Engineering, Hunan University, China"],"affiliations":[{"raw_affiliation_string":"College of Electrical and Information Engineering, Hunan University, China","institution_ids":["https://openalex.org/I16609230"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5107886949","display_name":"Antonio J. Plara","orcid":null},"institutions":[{"id":"https://openalex.org/I80606768","display_name":"Universidad de Extremadura","ror":"https://ror.org/0174shg90","country_code":"ES","type":"funder","lineage":["https://openalex.org/I80606768"]}],"countries":["ES"],"is_corresponding":false,"raw_author_name":"Antonio J. Plara","raw_affiliation_strings":["Department of Technology of Computers and Communications, University of Extremadura, Spain"],"affiliations":[{"raw_affiliation_string":"Department of Technology of Computers and Communications, University of Extremadura, Spain","institution_ids":["https://openalex.org/I80606768"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.627,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":7,"citation_normalized_percentile":{"value":0.7752,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":82,"max":83},"biblio":{"volume":null,"issue":null,"first_page":"3587","last_page":"3590"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13890","display_name":"Remote Sensing and Land Use","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/1902","display_name":"Atmospheric Science"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9857,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.74663186},{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.506733},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.45523882}],"concepts":[{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.77566636},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.768577},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.74663186},{"id":"https://openalex.org/C185142706","wikidata":"https://www.wikidata.org/wiki/Q1134404","display_name":"Covariance matrix","level":2,"score":0.6586298},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.54840356},{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.506733},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.505989},{"id":"https://openalex.org/C83042196","wikidata":"https://www.wikidata.org/wiki/Q5178898","display_name":"Covariance intersection","level":4,"score":0.5056629},{"id":"https://openalex.org/C178650346","wikidata":"https://www.wikidata.org/wiki/Q201984","display_name":"Covariance","level":2,"score":0.503493},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.45523882},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.42363197},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.33253008},{"id":"https://openalex.org/C180877172","wikidata":"https://www.wikidata.org/wiki/Q5401390","display_name":"Estimation of covariance matrices","level":3,"score":0.20087546},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.15418041},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.07193783},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/igarss.2018.8517914","pdf_url":null,"source":{"id":"https://openalex.org/S4363604196","display_name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10","score":0.76}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":10,"referenced_works":["https://openalex.org/W1549083695","https://openalex.org/W1980038761","https://openalex.org/W2001123951","https://openalex.org/W2077689834","https://openalex.org/W2144093206","https://openalex.org/W2149652297","https://openalex.org/W2153425333","https://openalex.org/W2190186811","https://openalex.org/W2768211636","https://openalex.org/W2793645503"],"related_works":["https://openalex.org/W338040569","https://openalex.org/W2718384077","https://openalex.org/W2395573186","https://openalex.org/W2317323511","https://openalex.org/W2165912155","https://openalex.org/W2142324288","https://openalex.org/W2074589917","https://openalex.org/W2022823194","https://openalex.org/W1597192237","https://openalex.org/W1489099099"],"abstract_inverted_index":{"In":[0],"this":[1],"paper,":[2],"a":[3,54,90,110],"covariance":[4,55,71,85],"matrix":[5,56,72,86],"based":[6],"feature":[7,22,25,41,44,80,124,130,153,156,169],"fusion":[8],"(CMF-F)":[9],"framework":[10,141],"is":[11,57,87,107],"proposed":[12,31,105,139],"to":[13,59],"combine":[14],"two":[15,62,78],"low-level":[16,63,151],"visual":[17,64,123,152,168],"features":[18],"i.e.,":[19],"the":[20,30,39,70,75,83,128,138,146,150,158,165],"Gabor":[21,40,155],"and":[23,42,50,119,127,157],"color":[24,43,159],"for":[26,74,101],"scene":[27],"classification.":[28],"Generally,":[29],"method":[32,106,126],"consists":[33],"of":[34,77,149],"following":[35],"three":[36],"steps.":[37],"Firstly,":[38],"are":[45],"extracted":[46,58],"from":[47],"original":[48],"image":[49],"stacked":[51],"together.":[52],"Then,":[53],"fuse":[60],"these":[61],"features.":[65],"Each":[66],"nondiagonal":[67],"entry":[68],"in":[69],"stands":[73],"correlation":[76],"different":[79],"dimensions.":[81],"Finally,":[82],"obtained":[84],"handled":[88],"by":[89],"kernel":[91],"linear":[92],"discriminative":[93],"analysis":[94],"algorithm":[95],"followed":[96],"with":[97,121],"nearest":[98],"neighboring":[99],"classifier":[100],"label":[102],"assignment.":[103],"The":[104,133],"tested":[108],"on":[109],"public":[111],"21-classes":[112],"UC":[113],"Merced":[114],"land":[115],"use":[116],"data":[117],"set":[118],"compared":[120],"mid-level":[122,167],"oriented":[125,131,170],"high-level":[129],"methods.":[132,171],"experimental":[134],"results":[135],"demonstrate":[136],"that":[137],"CMFF":[140],"can":[142,163],"not":[143],"only":[144],"improve":[145],"classification":[147],"performance":[148],"(the":[154],"feature),":[160],"but":[161],"also":[162],"outperform":[164],"conventional":[166]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2901715667","counts_by_year":[{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":3},{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":1}],"updated_date":"2025-04-16T11:42:38.775229","created_date":"2018-11-29"}