{"id":"https://openalex.org/W2547931763","doi":"https://doi.org/10.1109/igarss.2016.7729583","title":"A damped Newton variational inversion for synthetic aperture radar wind retrieval","display_name":"A damped Newton variational inversion for synthetic aperture radar wind retrieval","publication_year":2016,"publication_date":"2016-07-01","ids":{"openalex":"https://openalex.org/W2547931763","doi":"https://doi.org/10.1109/igarss.2016.7729583","mag":"2547931763"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/igarss.2016.7729583","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5022639310","display_name":"Zhuhui Jiang","orcid":"https://orcid.org/0000-0001-8925-5306"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]},{"id":"https://openalex.org/I4210152758","display_name":"Institute of Atmospheric Physics","ror":"https://ror.org/0424h4e32","country_code":"CN","type":"funder","lineage":["https://openalex.org/I19820366","https://openalex.org/I4210152758"]},{"id":"https://openalex.org/I19820366","display_name":"Chinese Academy of Sciences","ror":"https://ror.org/034t30j35","country_code":"CN","type":"government","lineage":["https://openalex.org/I19820366"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhuhui Jiang","raw_affiliation_strings":["Chinese Academy of Sciences, Institute of Atmospheric Physics, Beijing, China","Shanghai Key Lab. of Intelligent Sensing & Recognition, Shanghai Jiao Tong University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Shanghai Key Lab. of Intelligent Sensing & Recognition, Shanghai Jiao Tong University, Shanghai, China","institution_ids":["https://openalex.org/I183067930"]},{"raw_affiliation_string":"Chinese Academy of Sciences, Institute of Atmospheric Physics, Beijing, China","institution_ids":["https://openalex.org/I4210152758","https://openalex.org/I19820366"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5065766320","display_name":"Yuanxiang Li","orcid":"https://orcid.org/0000-0002-1797-3621"},"institutions":[{"id":"https://openalex.org/I4210130704","display_name":"University of Michigan\u2013Dearborn","ror":"https://ror.org/035wtm547","country_code":"US","type":"funder","lineage":["https://openalex.org/I4210130704"]},{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN","US"],"is_corresponding":false,"raw_author_name":"Yuanxiang Li","raw_affiliation_strings":["Dept. of Electrical & Computer Engineering, University of Michigan, Dearborn, MI, USA","Shanghai Key Lab. of Intelligent Sensing & Recognition, Shanghai Jiao Tong University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Dept. of Electrical & Computer Engineering, University of Michigan, Dearborn, MI, USA","institution_ids":["https://openalex.org/I4210130704"]},{"raw_affiliation_string":"Shanghai Key Lab. of Intelligent Sensing & Recognition, Shanghai Jiao Tong University, Shanghai, China","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5080779901","display_name":"Weidong Xiang","orcid":"https://orcid.org/0000-0001-6010-538X"},"institutions":[{"id":"https://openalex.org/I4210130704","display_name":"University of Michigan\u2013Dearborn","ror":"https://ror.org/035wtm547","country_code":"US","type":"funder","lineage":["https://openalex.org/I4210130704"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Weidong Xiang","raw_affiliation_strings":["Dept. of Electrical & Computer Engineering, University of Michigan, Dearborn, MI, USA"],"affiliations":[{"raw_affiliation_string":"Dept. of Electrical & Computer Engineering, University of Michigan, Dearborn, MI, USA","institution_ids":["https://openalex.org/I4210130704"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5076563395","display_name":"Fangjie Yu","orcid":"https://orcid.org/0000-0002-4664-2741"},"institutions":[{"id":"https://openalex.org/I59028903","display_name":"Ocean University of China","ror":"https://ror.org/04rdtx186","country_code":"CN","type":"funder","lineage":["https://openalex.org/I59028903"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Fangjie Yu","raw_affiliation_strings":["College of Information Science and Engineering, Ocean University of China, Qingdao, China"],"affiliations":[{"raw_affiliation_string":"College of Information Science and Engineering, Ocean University of China, Qingdao, China","institution_ids":["https://openalex.org/I59028903"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100445293","display_name":"Wenxian Yu","orcid":"https://orcid.org/0000-0002-8741-776X"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wenxian Yu","raw_affiliation_strings":["Shanghai Key Lab. of Intelligent Sensing & Recognition, Shanghai Jiao Tong University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Shanghai Key Lab. of Intelligent Sensing & Recognition, Shanghai Jiao Tong University, Shanghai, China","institution_ids":["https://openalex.org/I183067930"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":5,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":66},"biblio":{"volume":"60","issue":null,"first_page":"2257","last_page":"2260"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11061","display_name":"Ocean Waves and Remote Sensing","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1910","display_name":"Oceanography"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11061","display_name":"Ocean Waves and Remote Sensing","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1910","display_name":"Oceanography"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11312","display_name":"Soil Moisture and Remote Sensing","score":0.999,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10255","display_name":"Oceanographic and Atmospheric Processes","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1910","display_name":"Oceanography"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/inverse-transform-sampling","display_name":"Inverse transform sampling","score":0.41316682}],"concepts":[{"id":"https://openalex.org/C87360688","wikidata":"https://www.wikidata.org/wiki/Q740686","display_name":"Synthetic aperture radar","level":2,"score":0.7603206},{"id":"https://openalex.org/C1893757","wikidata":"https://www.wikidata.org/wiki/Q3653001","display_name":"Inversion (geology)","level":3,"score":0.70204055},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6032605},{"id":"https://openalex.org/C161067210","wikidata":"https://www.wikidata.org/wiki/Q1464943","display_name":"Wind speed","level":2,"score":0.577281},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.4624427},{"id":"https://openalex.org/C554190296","wikidata":"https://www.wikidata.org/wiki/Q47528","display_name":"Radar","level":2,"score":0.4320374},{"id":"https://openalex.org/C107775477","wikidata":"https://www.wikidata.org/wiki/Q1057900","display_name":"Wind direction","level":3,"score":0.4154458},{"id":"https://openalex.org/C109094680","wikidata":"https://www.wikidata.org/wiki/Q6060432","display_name":"Inverse synthetic aperture radar","level":4,"score":0.4151973},{"id":"https://openalex.org/C143606050","wikidata":"https://www.wikidata.org/wiki/Q1377019","display_name":"Inverse transform sampling","level":3,"score":0.41316682},{"id":"https://openalex.org/C62649853","wikidata":"https://www.wikidata.org/wiki/Q199687","display_name":"Remote sensing","level":1,"score":0.3559183},{"id":"https://openalex.org/C10929652","wikidata":"https://www.wikidata.org/wiki/Q7279985","display_name":"Radar imaging","level":3,"score":0.33620316},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.2142204},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.1762571},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.14552033},{"id":"https://openalex.org/C153294291","wikidata":"https://www.wikidata.org/wiki/Q25261","display_name":"Meteorology","level":1,"score":0.13672501},{"id":"https://openalex.org/C84174578","wikidata":"https://www.wikidata.org/wiki/Q889796","display_name":"Surface wave","level":2,"score":0.064582855},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C109007969","wikidata":"https://www.wikidata.org/wiki/Q749565","display_name":"Structural basin","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/igarss.2016.7729583","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/7","score":0.91,"display_name":"Affordable and clean energy"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":10,"referenced_works":["https://openalex.org/W1993512681","https://openalex.org/W2043268455","https://openalex.org/W2077009521","https://openalex.org/W2083726935","https://openalex.org/W2093761294","https://openalex.org/W2116623581","https://openalex.org/W3029645440","https://openalex.org/W3113385088","https://openalex.org/W4301014524","https://openalex.org/W839977574"],"related_works":["https://openalex.org/W2996630340","https://openalex.org/W2613451563","https://openalex.org/W2545123933","https://openalex.org/W2540450177","https://openalex.org/W2170580735","https://openalex.org/W2112228652","https://openalex.org/W2011609146","https://openalex.org/W1994788526","https://openalex.org/W1915418828","https://openalex.org/W1552305638"],"abstract_inverted_index":{"The":[0],"variational":[1],"inversion":[2],"for":[3,89],"synthetic":[4],"aperture":[5],"radar":[6],"(SAR)":[7],"wind":[8,26,45,80,99,115],"retrieval":[9,116],"can":[10,76],"take":[11],"errors":[12,24],"of":[13,22,25,44,87,108],"all":[14],"sources":[15],"involved":[16],"into":[17,47],"account,":[18],"but":[19],"the":[20,31,42,60,84,97,106],"complexity":[21],"ascertaining":[23],"vectors":[27,46],"is":[28,34,64,101,110],"high":[29],"and":[30,49,51,83],"iteration":[32],"process":[33],"very":[35],"time-consuming.":[36],"In":[37],"this":[38],"paper,":[39],"we":[40],"modify":[41],"decomposition":[43],"speed":[48,100],"direction,":[50],"adopt":[52],"a":[53],"damped":[54],"Newton":[55],"method":[56],"(DNVAR)":[57],"to":[58],"solve":[59],"cost":[61],"function,":[62],"which":[63],"based":[65],"on":[66],"inexact":[67],"line":[68],"search":[69],"condition.":[70],"Experimental":[71],"results":[72],"show":[73],"that":[74],"DNVAR":[75,90,109],"effectively":[77],"reduce":[78],"background":[79,98],"vector":[81],"errors,":[82],"average":[85],"number":[86],"iterations":[88],"descends":[91],"greatly.":[92],"For":[93],"practical":[94],"applications,":[95],"when":[96],"higher":[102,111],"than":[103,112],"10":[104],"m/s,":[105],"accuracy":[107],"direct":[113],"SAR":[114],"(DIRECT),":[117],"otherwise,":[118],"DIRECT":[119],"performs":[120],"better.":[121]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2547931763","counts_by_year":[],"updated_date":"2025-03-05T08:59:44.996292","created_date":"2016-11-11"}