{"id":"https://openalex.org/W2086783712","doi":"https://doi.org/10.1109/igarss.2009.5418086","title":"A suitalbe solution for extraction of alteration anomalies from the remote sensing data: A case study of the Baogutu porphyry copper deposit intrusion, Xinjiang, China using Aster data","display_name":"A suitalbe solution for extraction of alteration anomalies from the remote sensing data: A case study of the Baogutu porphyry copper deposit intrusion, Xinjiang, China using Aster data","publication_year":2009,"publication_date":"2009-01-01","ids":{"openalex":"https://openalex.org/W2086783712","doi":"https://doi.org/10.1109/igarss.2009.5418086","mag":"2086783712"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/igarss.2009.5418086","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5065927014","display_name":"Yu Chen","orcid":"https://orcid.org/0000-0002-7694-4441"},"institutions":[{"id":"https://openalex.org/I4210166112","display_name":"State Key Laboratory of Remote Sensing Science","ror":"https://ror.org/05wzjqa24","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210166112"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yu Chen","raw_affiliation_strings":["Chinese Academy and Sciences, Beijing, China","Institute of Remote Sensing Applications, Chinese Academy and Sciences, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Chinese Academy and Sciences, Beijing, China","institution_ids":[]},{"raw_affiliation_string":"Institute of Remote Sensing Applications, Chinese Academy and Sciences, Beijing, China","institution_ids":["https://openalex.org/I4210166112"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103489980","display_name":"Qizhong Lin","orcid":null},"institutions":[{"id":"https://openalex.org/I4210128053","display_name":"Institute of Remote Sensing and Digital Earth","ror":"https://ror.org/02cjszf03","country_code":"CN","type":"funder","lineage":["https://openalex.org/I19820366","https://openalex.org/I4210128053"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Qizhong Lin","raw_affiliation_strings":["Center of Earth Observation, Digital Earth, Chinese Academy and Sciences, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Center of Earth Observation, Digital Earth, Chinese Academy and Sciences, Beijing, China","institution_ids":["https://openalex.org/I4210128053"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5073894089","display_name":"Huadong Guo","orcid":"https://orcid.org/0000-0003-0337-1862"},"institutions":[{"id":"https://openalex.org/I4210128053","display_name":"Institute of Remote Sensing and Digital Earth","ror":"https://ror.org/02cjszf03","country_code":"CN","type":"funder","lineage":["https://openalex.org/I19820366","https://openalex.org/I4210128053"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Huadong Guo","raw_affiliation_strings":["Center of Earth Observation, Digital Earth, Chinese Academy and Sciences, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Center of Earth Observation, Digital Earth, Chinese Academy and Sciences, Beijing, China","institution_ids":["https://openalex.org/I4210128053"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5080383765","display_name":"Yongmin Wei","orcid":null},"institutions":[{"id":"https://openalex.org/I4210166112","display_name":"State Key Laboratory of Remote Sensing Science","ror":"https://ror.org/05wzjqa24","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210166112"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yongmin Wei","raw_affiliation_strings":["Institute of Remote Sensing Applications, Chinese Academy and Sciences, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Institute of Remote Sensing Applications, Chinese Academy and Sciences, Beijing, China","institution_ids":["https://openalex.org/I4210166112"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5072210073","display_name":"Qinjun Wang","orcid":"https://orcid.org/0000-0001-6084-1889"},"institutions":[{"id":"https://openalex.org/I4210128053","display_name":"Institute of Remote Sensing and Digital Earth","ror":"https://ror.org/02cjszf03","country_code":"CN","type":"funder","lineage":["https://openalex.org/I19820366","https://openalex.org/I4210128053"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Qinjun Wang","raw_affiliation_strings":["Center of Earth Observation, Digital Earth, Chinese Academy and Sciences, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Center of Earth Observation, Digital Earth, Chinese Academy and Sciences, Beijing, China","institution_ids":["https://openalex.org/I4210128053"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":64},"biblio":{"volume":null,"issue":null,"first_page":"II","last_page":"360"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12157","display_name":"Geochemistry and Geologic Mapping","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12157","display_name":"Geochemistry and Geologic Mapping","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9973,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminant-function-analysis","display_name":"Discriminant function analysis","score":0.41767898}],"concepts":[{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.66622096},{"id":"https://openalex.org/C13772937","wikidata":"https://www.wikidata.org/wiki/Q298019","display_name":"Advanced Spaceborne Thermal Emission and Reflection Radiometer","level":3,"score":0.5347309},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.45831344},{"id":"https://openalex.org/C164866538","wikidata":"https://www.wikidata.org/wiki/Q367351","display_name":"Cluster (spacecraft)","level":2,"score":0.45285964},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.44834325},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.44090343},{"id":"https://openalex.org/C78397625","wikidata":"https://www.wikidata.org/wiki/Q192487","display_name":"Discriminant","level":2,"score":0.43285453},{"id":"https://openalex.org/C43214815","wikidata":"https://www.wikidata.org/wiki/Q7310987","display_name":"Reliability (semiconductor)","level":3,"score":0.43236345},{"id":"https://openalex.org/C41771347","wikidata":"https://www.wikidata.org/wiki/Q1228929","display_name":"Discriminant function analysis","level":2,"score":0.41767898},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.4172812},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.40412685},{"id":"https://openalex.org/C62649853","wikidata":"https://www.wikidata.org/wiki/Q199687","display_name":"Remote sensing","level":1,"score":0.30915916},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.23145068},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.16313377},{"id":"https://openalex.org/C181843262","wikidata":"https://www.wikidata.org/wiki/Q640492","display_name":"Digital elevation model","level":2,"score":0.13087165},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.08483514},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/igarss.2009.5418086","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.71,"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":3,"referenced_works":["https://openalex.org/W2071884509","https://openalex.org/W2385831248","https://openalex.org/W2391118436"],"related_works":["https://openalex.org/W4387528765","https://openalex.org/W4238888834","https://openalex.org/W2392907906","https://openalex.org/W2167334622","https://openalex.org/W2146026567","https://openalex.org/W2107172817","https://openalex.org/W2075660794","https://openalex.org/W2042632150","https://openalex.org/W2013111745","https://openalex.org/W1997987234"],"abstract_inverted_index":{"This":[0,93],"paper":[1],"presents":[2],"a":[3,21,134,141,151],"new":[4],"alteration":[5,61,77,91,103,121],"mineral":[6,50],"mapping":[7,59,75,132],"method":[8,19,94,138],"based":[9,79],"on":[10,80],"statistical":[11],"analysis":[12],"of":[13,16,23,26,28,45,48,84,98,102,111,116,131,144],"spectra.":[14],"First":[15],"all,":[17],"this":[18],"processes":[20],"cluster":[22],"measurement":[24],"data":[25],"spectral":[27],"field":[29],"samples,":[30],"in":[31,146],"order":[32],"to":[33,89,133,140],"distinguish":[34],"different":[35,49,100],"sample":[36],"area":[37,143],"from":[38],"the":[39,43,46,65,81,99,108,114,117,129],"overall":[40],"types.":[41],"Second,":[42],"results":[44],"clustering":[47],"alterations":[51],"were":[52],"established":[53],"their":[54],"respective":[55],"discriminant":[56,118],"functions.":[57],"Thus,":[58],"major":[60],"type":[62],"accords":[63],"with":[64],"clustered":[66],"reference":[67],"spectra":[68],"by":[69],"given":[70],"remote":[71],"sensing":[72],"images.":[73],"Finally":[74],"further":[76],"types":[78],"discrimant":[82],"function":[83,119],"second":[85],"step,":[86],"which":[87,149],"lead":[88],"final":[90],"map.":[92],"takes":[95],"full":[96],"account":[97],"combination":[101],"types,":[104],"as":[105,107],"well":[106],"regional":[109],"differences":[110],"alterations,":[112],"and":[113],"establishment":[115],"for":[120],"minerals":[122],"is":[123],"more":[124],"scientific.":[125],"Moreover,":[126],"we":[127],"access":[128],"reliability":[130],"certain":[135],"extent.":[136],"The":[137],"applied":[139],"study":[142],"Baogutu":[145],"Xinjiang":[147],"Province,":[148],"represent":[150],"good":[152],"result.":[153]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2086783712","counts_by_year":[],"updated_date":"2025-02-01T04:21:54.906127","created_date":"2016-06-24"}