{"id":"https://openalex.org/W2167394725","doi":"https://doi.org/10.1109/igarss.2008.4780028","title":"Weighted Least Squares Pan-Sharpening of Very High Resolution Multispectral Images","display_name":"Weighted Least Squares Pan-Sharpening of Very High Resolution Multispectral Images","publication_year":2008,"publication_date":"2008-01-01","ids":{"openalex":"https://openalex.org/W2167394725","doi":"https://doi.org/10.1109/igarss.2008.4780028","mag":"2167394725"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/igarss.2008.4780028","pdf_url":null,"source":{"id":"https://openalex.org/S4363604196","display_name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5042160082","display_name":"Filippo Nencini","orcid":null},"institutions":[{"id":"https://openalex.org/I102064193","display_name":"University of Siena","ror":"https://ror.org/01tevnk56","country_code":"IT","type":"education","lineage":["https://openalex.org/I102064193"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Filippo Nencini","raw_affiliation_strings":["Department of Information Engineering, University of Sienna, Siena, Italy"],"affiliations":[{"raw_affiliation_string":"Department of Information Engineering, University of Sienna, Siena, Italy","institution_ids":["https://openalex.org/I102064193"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5017896172","display_name":"Luca Capobianco","orcid":null},"institutions":[{"id":"https://openalex.org/I102064193","display_name":"University of Siena","ror":"https://ror.org/01tevnk56","country_code":"IT","type":"education","lineage":["https://openalex.org/I102064193"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Luca Capobianco","raw_affiliation_strings":["Department of Information Engineering, University of Sienna, Siena, Italy"],"affiliations":[{"raw_affiliation_string":"Department of Information Engineering, University of Sienna, Siena, Italy","institution_ids":["https://openalex.org/I102064193"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5058002875","display_name":"Andrea Garzelli","orcid":"https://orcid.org/0000-0003-2332-780X"},"institutions":[{"id":"https://openalex.org/I102064193","display_name":"University of Siena","ror":"https://ror.org/01tevnk56","country_code":"IT","type":"education","lineage":["https://openalex.org/I102064193"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Andrea Garzelli","raw_affiliation_strings":["Department of Information Engineering, University of Sienna, Siena, Italy"],"affiliations":[{"raw_affiliation_string":"Department of Information Engineering, University of Sienna, Siena, Italy","institution_ids":["https://openalex.org/I102064193"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.457,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":8,"citation_normalized_percentile":{"value":0.697133,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":82,"max":83},"biblio":{"volume":null,"issue":null,"first_page":"V ","last_page":" 68"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11659","display_name":"Multispectral and Hyperspectral Image Fusion","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11659","display_name":"Multispectral and Hyperspectral Image Fusion","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10689","display_name":"Hyperspectral Image Analysis and Classification","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10111","display_name":"Remote Sensing in Vegetation Monitoring and Phenology","score":0.9822,"subfield":{"id":"https://openalex.org/subfields/2303","display_name":"Ecology"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/panchromatic-film","display_name":"Panchromatic film","score":0.965084},{"id":"https://openalex.org/keywords/sharpening","display_name":"Sharpening","score":0.8663406},{"id":"https://openalex.org/keywords/image-fusion","display_name":"Image Fusion","score":0.596135},{"id":"https://openalex.org/keywords/pansharpening","display_name":"Pansharpening","score":0.591525},{"id":"https://openalex.org/keywords/multispectral","display_name":"Multispectral","score":0.552872},{"id":"https://openalex.org/keywords/image-analysis","display_name":"Image Analysis","score":0.532783},{"id":"https://openalex.org/keywords/spectral-unmixing","display_name":"Spectral Unmixing","score":0.525886}],"concepts":[{"id":"https://openalex.org/C107445234","wikidata":"https://www.wikidata.org/wiki/Q280995","display_name":"Panchromatic film","level":3,"score":0.965084},{"id":"https://openalex.org/C173163844","wikidata":"https://www.wikidata.org/wiki/Q1761440","display_name":"Multispectral image","level":2,"score":0.8986874},{"id":"https://openalex.org/C2781137444","wikidata":"https://www.wikidata.org/wiki/Q237105","display_name":"Sharpening","level":2,"score":0.8663406},{"id":"https://openalex.org/C205372480","wikidata":"https://www.wikidata.org/wiki/Q210521","display_name":"Image resolution","level":2,"score":0.6668147},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6140331},{"id":"https://openalex.org/C69744172","wikidata":"https://www.wikidata.org/wiki/Q860822","display_name":"Image fusion","level":3,"score":0.58550066},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.57722074},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.5345634},{"id":"https://openalex.org/C158525013","wikidata":"https://www.wikidata.org/wiki/Q2593739","display_name":"Fusion","level":2,"score":0.49196264},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.46988347},{"id":"https://openalex.org/C185429906","wikidata":"https://www.wikidata.org/wiki/Q1130160","display_name":"Estimator","level":2,"score":0.41441602},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.39157975},{"id":"https://openalex.org/C62649853","wikidata":"https://www.wikidata.org/wiki/Q199687","display_name":"Remote sensing","level":1,"score":0.36967546},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.24017471},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.18113783},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.11198008},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/igarss.2008.4780028","pdf_url":null,"source":{"id":"https://openalex.org/S4363604196","display_name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":13,"referenced_works":["https://openalex.org/W1654063000","https://openalex.org/W1965392255","https://openalex.org/W2054133252","https://openalex.org/W2100329651","https://openalex.org/W2124743705","https://openalex.org/W2136251662","https://openalex.org/W2138847121","https://openalex.org/W2149720806","https://openalex.org/W2163334907","https://openalex.org/W2163677711","https://openalex.org/W2171845746","https://openalex.org/W2172185514","https://openalex.org/W250076511"],"related_works":["https://openalex.org/W4254327447","https://openalex.org/W2726689079","https://openalex.org/W2361746014","https://openalex.org/W2163677711","https://openalex.org/W2158394102","https://openalex.org/W2124952510","https://openalex.org/W2033186943","https://openalex.org/W2011962637","https://openalex.org/W1930929277","https://openalex.org/W1502637513"],"abstract_inverted_index":{"This":[0],"paper":[1],"presents":[2],"a":[3,24,43,48,58],"solution":[4],"to":[5,29,64],"the":[6,10,34,41,55,110],"problem":[7],"of":[8,13,40],"enhancing":[9],"spatial":[11],"resolution":[12,79],"multispectral":[14],"images":[15,80],"with":[16],"high-resolution":[17],"panchromatic":[18],"observations.":[19],"The":[20,51],"proposed":[21,111],"method":[22],"exploits":[23],"Weighted":[25],"Least":[26],"Squares":[27],"estimator":[28],"calculate":[30],"injection":[31],"parameters":[32],"in":[33,54,62],"fusion":[35,95],"model.":[36],"For":[37],"each":[38,69],"pixel":[39],"image":[42],"weight":[44],"is":[45,57,107],"calculated":[46],"by":[47,82,109],"classification":[49],"map.":[50],"classifier":[52],"used":[53],"experiments":[56],"Support":[59],"Vector":[60],"Machine":[61],"order":[63],"obtain":[65],"high":[66],"accuracy":[67],"on":[68,77,90],"land-cover":[70],"type.":[71],"Results":[72],"are":[73],"presented":[74],"and":[75,84,94,104],"discussed":[76],"very-high":[78],"acquired":[81],"Quickbird":[83],"Ikonos":[85],"satellite":[86],"systems.":[87],"Fusion":[88],"simulations":[89],"spatially":[91],"degraded":[92],"data":[93],"tests":[96],"at":[97],"full":[98],"scale":[99],"reveal":[100],"that":[101],"an":[102],"accurate":[103],"reliable":[105],"PAN-sharpening":[106],"achieved":[108],"method.":[112]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2167394725","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2021,"cited_by_count":1},{"year":2019,"cited_by_count":2},{"year":2014,"cited_by_count":3}],"updated_date":"2024-12-03T15:39:33.976660","created_date":"2016-06-24"}