{"id":"https://openalex.org/W2159026610","doi":"https://doi.org/10.1109/igarss.2008.4778835","title":"SAR Image Filtering Via Learned Dictionaries and Sparse Representations","display_name":"SAR Image Filtering Via Learned Dictionaries and Sparse Representations","publication_year":2008,"publication_date":"2008-01-01","ids":{"openalex":"https://openalex.org/W2159026610","doi":"https://doi.org/10.1109/igarss.2008.4778835","mag":"2159026610"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/igarss.2008.4778835","pdf_url":null,"source":{"id":"https://openalex.org/S4363604196","display_name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5008160815","display_name":"Samuel Foucher","orcid":"https://orcid.org/0000-0001-9557-6907"},"institutions":[{"id":"https://openalex.org/I4210111842","display_name":"Computer Research Institute of Montr\u00e9al","ror":"https://ror.org/0279d5115","country_code":"CA","type":"nonprofit","lineage":["https://openalex.org/I4210111842"]}],"countries":["CA"],"is_corresponding":true,"raw_author_name":"Samuel Foucher","raw_affiliation_strings":["Research & Development Department, Computer Research Institute of Montreal, Montreal, QUE, Canada"],"affiliations":[{"raw_affiliation_string":"Research & Development Department, Computer Research Institute of Montreal, Montreal, QUE, Canada","institution_ids":["https://openalex.org/I4210111842"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5008160815"],"corresponding_institution_ids":["https://openalex.org/I4210111842"],"apc_list":null,"apc_paid":null,"fwci":0.737,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":54,"citation_normalized_percentile":{"value":0.928671,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":94,"max":95},"biblio":{"volume":null,"issue":null,"first_page":"I","last_page":"232"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11659","display_name":"Advanced Image Fusion Techniques","score":0.9955,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/k-svd","display_name":"K-SVD","score":0.79832023},{"id":"https://openalex.org/keywords/curvelet","display_name":"Curvelet","score":0.76947236}],"concepts":[{"id":"https://openalex.org/C124066611","wikidata":"https://www.wikidata.org/wiki/Q28684319","display_name":"Sparse approximation","level":2,"score":0.8244914},{"id":"https://openalex.org/C154771677","wikidata":"https://www.wikidata.org/wiki/Q17098361","display_name":"K-SVD","level":3,"score":0.79832023},{"id":"https://openalex.org/C131720326","wikidata":"https://www.wikidata.org/wiki/Q5196075","display_name":"Curvelet","level":4,"score":0.76947236},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.66876596},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6424629},{"id":"https://openalex.org/C22789450","wikidata":"https://www.wikidata.org/wiki/Q420904","display_name":"Singular value decomposition","level":2,"score":0.61617714},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6100132},{"id":"https://openalex.org/C156872377","wikidata":"https://www.wikidata.org/wiki/Q6786281","display_name":"Matching pursuit","level":3,"score":0.60513747},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.45700276},{"id":"https://openalex.org/C204241405","wikidata":"https://www.wikidata.org/wiki/Q461499","display_name":"Transformation (genetics)","level":3,"score":0.45381093},{"id":"https://openalex.org/C163294075","wikidata":"https://www.wikidata.org/wiki/Q581861","display_name":"Noise reduction","level":2,"score":0.4491135},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.42899153},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.34400922},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.32706562},{"id":"https://openalex.org/C124851039","wikidata":"https://www.wikidata.org/wiki/Q2665459","display_name":"Compressed sensing","level":2,"score":0.20290491},{"id":"https://openalex.org/C196216189","wikidata":"https://www.wikidata.org/wiki/Q2867","display_name":"Wavelet transform","level":3,"score":0.09453899},{"id":"https://openalex.org/C47432892","wikidata":"https://www.wikidata.org/wiki/Q831390","display_name":"Wavelet","level":2,"score":0.088846385},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/igarss.2008.4778835","pdf_url":null,"source":{"id":"https://openalex.org/S4363604196","display_name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Quality education","id":"https://metadata.un.org/sdg/4","score":0.75}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":11,"referenced_works":["https://openalex.org/W2056758595","https://openalex.org/W2073354982","https://openalex.org/W2104763670","https://openalex.org/W2111065108","https://openalex.org/W2114122776","https://openalex.org/W2133954466","https://openalex.org/W2140483520","https://openalex.org/W2147176572","https://openalex.org/W2153663612","https://openalex.org/W2160547390","https://openalex.org/W2164647001"],"related_works":["https://openalex.org/W4254934694","https://openalex.org/W4245251483","https://openalex.org/W2994662386","https://openalex.org/W2965458591","https://openalex.org/W2532569109","https://openalex.org/W2160547390","https://openalex.org/W2113038107","https://openalex.org/W2042974711","https://openalex.org/W2011611369","https://openalex.org/W1992008660"],"abstract_inverted_index":{"In":[0,18,55,80],"the":[1,11,52,56,95,105,140,145,150,153],"last":[2],"decade":[3],"there":[4],"has":[5],"been":[6,30],"a":[7,26,39,48,61,72,101,123,164],"growing":[8],"interest":[9],"in":[10,25,68,133,166],"study":[12],"of":[13,16,37,87,104,144],"sparse":[14,49,73,102],"representation":[15,76,103],"signals.":[17],"particular,":[19],"many":[20],"new":[21,129],"multiscale":[22],"image":[23,88,96,106],"representations":[24],"geometric":[27],"space":[28],"have":[29],"proposed":[31],"(Curvelets,":[32],"Ridgelets,":[33],"Contourlets,":[34],"etc.).":[35],"Instead":[36],"using":[38,71,116],"fixed":[40],"transformation,":[41],"an":[42,83,117],"alternative":[43],"approach":[44,63,130],"is":[45,92,113,131,155],"to":[46],"build":[47],"dictionary":[50,85,146],"from":[51,94,149],"signal":[53],"itself.":[54],"present":[57],"work,":[58],"we":[59],"propose":[60],"novel":[62],"for":[64],"speckle":[65],"noise":[66,138,167],"reduction":[67,165],"SAR":[69],"images":[70],"and":[74,122],"redundant":[75],"over":[77],"trained":[78],"dictionaries.":[79],"this":[81],"approach,":[82],"adaptive":[84],"composed":[86],"patches":[89],"(called":[90],"atoms)":[91],"learned":[93,148],"so":[97],"that":[98,142,160],"it":[99],"constitutes":[100],"content.":[107],"This":[108,128],"learning":[109],"process,":[110],"called":[111],"K-SVD,":[112],"efficiently":[114],"performed":[115],"Orthogonal":[118],"Matching":[119],"Pursuit":[120],"(OMP)":[121],"Singular":[124],"Value":[125],"Decomposition":[126],"(SVD).":[127],"effective":[132],"removing":[134],"white":[135],"additive":[136],"Gaussian":[137],"despite":[139],"fact":[141],"elements":[143],"are":[147,161],"noisy":[151],"image,":[152],"algorithm":[154],"converging":[156],"toward":[157],"meaningful":[158],"atoms":[159],"already":[162],"showing":[163],"level.":[168]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2159026610","counts_by_year":[{"year":2023,"cited_by_count":7},{"year":2022,"cited_by_count":5},{"year":2021,"cited_by_count":2},{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":3},{"year":2018,"cited_by_count":4},{"year":2017,"cited_by_count":9},{"year":2016,"cited_by_count":6},{"year":2015,"cited_by_count":4},{"year":2014,"cited_by_count":5},{"year":2013,"cited_by_count":2},{"year":2012,"cited_by_count":3}],"updated_date":"2025-03-20T13:12:54.870402","created_date":"2016-06-24"}