{"id":"https://openalex.org/W2123884028","doi":"https://doi.org/10.1109/igarss.2007.4423158","title":"Hyperspectral image classification by recursive spatial boosting based on the bootstrap method","display_name":"Hyperspectral image classification by recursive spatial boosting based on the bootstrap method","publication_year":2007,"publication_date":"2007-01-01","ids":{"openalex":"https://openalex.org/W2123884028","doi":"https://doi.org/10.1109/igarss.2007.4423158","mag":"2123884028"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/igarss.2007.4423158","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5049952779","display_name":"Shuji Kawaguchi","orcid":"https://orcid.org/0000-0002-4045-6518"},"institutions":[{"id":"https://openalex.org/I135598925","display_name":"Kyushu University","ror":"https://ror.org/00p4k0j84","country_code":"JP","type":"funder","lineage":["https://openalex.org/I135598925"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"None Shuji Kawaguchi","raw_affiliation_strings":["Graduate School of Mathematics, Kyushu University, Fukuoka, Japan"],"affiliations":[{"raw_affiliation_string":"Graduate School of Mathematics, Kyushu University, Fukuoka, Japan","institution_ids":["https://openalex.org/I135598925"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5070567505","display_name":"Ryuei Nishii","orcid":"https://orcid.org/0000-0001-8109-6638"},"institutions":[{"id":"https://openalex.org/I135598925","display_name":"Kyushu University","ror":"https://ror.org/00p4k0j84","country_code":"JP","type":"funder","lineage":["https://openalex.org/I135598925"]}],"countries":["JP"],"is_corresponding":false,"raw_author_name":"None Ryuei Nishii","raw_affiliation_strings":["Faculty of Mathematics, Kyushu University, Fukuoka, Japan"],"affiliations":[{"raw_affiliation_string":"Faculty of Mathematics, Kyushu University, Fukuoka, Japan","institution_ids":["https://openalex.org/I135598925"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":63},"biblio":{"volume":null,"issue":null,"first_page":"1751","last_page":"1754"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13890","display_name":"Remote Sensing and Land Use","score":0.9866,"subfield":{"id":"https://openalex.org/subfields/1902","display_name":"Atmospheric Science"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10640","display_name":"Spectroscopy and Chemometric Analyses","score":0.9851,"subfield":{"id":"https://openalex.org/subfields/1602","display_name":"Analytical Chemistry"},"field":{"id":"https://openalex.org/fields/16","display_name":"Chemistry"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/boosting","display_name":"Boosting","score":0.9633564},{"id":"https://openalex.org/keywords/adaboost","display_name":"AdaBoost","score":0.71816045},{"id":"https://openalex.org/keywords/contextual-image-classification","display_name":"Contextual image classification","score":0.5152145},{"id":"https://openalex.org/keywords/spatial-contextual-awareness","display_name":"Spatial contextual awareness","score":0.43379477}],"concepts":[{"id":"https://openalex.org/C46686674","wikidata":"https://www.wikidata.org/wiki/Q466303","display_name":"Boosting (machine learning)","level":2,"score":0.9633564},{"id":"https://openalex.org/C159078339","wikidata":"https://www.wikidata.org/wiki/Q959005","display_name":"Hyperspectral imaging","level":2,"score":0.75879383},{"id":"https://openalex.org/C141404830","wikidata":"https://www.wikidata.org/wiki/Q2823869","display_name":"AdaBoost","level":3,"score":0.71816045},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6996724},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.67072535},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6199039},{"id":"https://openalex.org/C75294576","wikidata":"https://www.wikidata.org/wiki/Q5165192","display_name":"Contextual image classification","level":3,"score":0.5152145},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.44503015},{"id":"https://openalex.org/C159620131","wikidata":"https://www.wikidata.org/wiki/Q1938983","display_name":"Spatial analysis","level":2,"score":0.43983334},{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.43720344},{"id":"https://openalex.org/C64754055","wikidata":"https://www.wikidata.org/wiki/Q7574053","display_name":"Spatial contextual awareness","level":2,"score":0.43379477},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.43171194},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.25827393},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.21306905},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.21076551},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.15126935}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/igarss.2007.4423158","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":14,"referenced_works":["https://openalex.org/W1995945562","https://openalex.org/W1997063559","https://openalex.org/W2020999234","https://openalex.org/W2024046085","https://openalex.org/W2103542423","https://openalex.org/W2104269704","https://openalex.org/W2108217834","https://openalex.org/W2108759950","https://openalex.org/W2112076978","https://openalex.org/W2136251662","https://openalex.org/W2911964244","https://openalex.org/W2912934387","https://openalex.org/W3106889297","https://openalex.org/W4212883601"],"related_works":["https://openalex.org/W3039673966","https://openalex.org/W2884325279","https://openalex.org/W2585372724","https://openalex.org/W2385662756","https://openalex.org/W2348748958","https://openalex.org/W2327035729","https://openalex.org/W2241444561","https://openalex.org/W1570592793","https://openalex.org/W1538046993","https://openalex.org/W1525436954"],"abstract_inverted_index":{"We":[0],"consider":[1],"contextual":[2,26,46,78],"classification":[3,47,67,79],"of":[4,34,39,68],"hyperspectral":[5],"data":[6],"based":[7,83],"on":[8],"the":[9,45],"boosting":[10],"method.":[11],"Bootstrap":[12],"AdaBoost":[13],"proposed":[14,58],"by":[15,44],"Kawaguchi":[16],"and":[17,53],"Nishii":[18],"(2006)":[19],"is":[20,55,73],"applied":[21],"to":[22,75],"Spatial":[23,35,51],"Boosting":[24,52],"for":[25,66],"classification.":[27],"The":[28,57],"paper":[29],"proposes":[30],"a":[31],"recursive":[32],"version":[33],"Boosting.":[36],"Posterior":[37],"probabilities":[38],"each":[40],"pixel":[41],"are":[42],"updated":[43],"function":[48],"derived":[49],"from":[50],"this":[54],"repeated.":[56],"method":[59],"with":[60],"random":[61],"stumps":[62],"shows":[63],"excellent":[64],"performance":[65],"AVIRIS":[69],"data.":[70],"Furthermore,":[71],"it":[72],"superior":[74],"other":[76],"well-known":[77],"methods":[80],"including":[81],"MRF":[82],"classifiers.":[84]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2123884028","counts_by_year":[],"updated_date":"2025-01-25T01:15:02.937498","created_date":"2016-06-24"}