{"id":"https://openalex.org/W2171735883","doi":"https://doi.org/10.1109/igarss.2004.1370400","title":"Nonlinear spectral similarity measure","display_name":"Nonlinear spectral similarity measure","publication_year":2004,"publication_date":"2004-12-23","ids":{"openalex":"https://openalex.org/W2171735883","doi":"https://doi.org/10.1109/igarss.2004.1370400","mag":"2171735883"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/igarss.2004.1370400","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5051316999","display_name":"Hong Tang","orcid":"https://orcid.org/0000-0001-9058-5724"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"None Tang Hong","raw_affiliation_strings":["The Institute of image processing and Pattern Recognition, Shanghai Jiaotong University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"The Institute of image processing and Pattern Recognition, Shanghai Jiaotong University, Shanghai, China","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101615935","display_name":"Tao Fang","orcid":"https://orcid.org/0000-0002-8277-2551"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"None Fang Tao","raw_affiliation_strings":["The Institute of image processing and Pattern Recognition, Shanghai Jiaotong University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"The Institute of image processing and Pattern Recognition, Shanghai Jiaotong University, Shanghai, China","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101997579","display_name":"Pengfei Shi","orcid":"https://orcid.org/0000-0002-2966-1676"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"None Shi PengFei","raw_affiliation_strings":["The Institute of image processing and Pattern Recognition, Shanghai Jiaotong University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"The Institute of image processing and Pattern Recognition, Shanghai Jiaotong University, Shanghai, China","institution_ids":["https://openalex.org/I183067930"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.876,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":2,"citation_normalized_percentile":{"value":0.332767,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":68,"max":71},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10640","display_name":"Spectroscopy and Chemometric Analyses","score":0.9948,"subfield":{"id":"https://openalex.org/subfields/1602","display_name":"Analytical Chemistry"},"field":{"id":"https://openalex.org/fields/16","display_name":"Chemistry"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13890","display_name":"Remote Sensing and Land Use","score":0.9929,"subfield":{"id":"https://openalex.org/subfields/1902","display_name":"Atmospheric Science"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/similarity-measure","display_name":"Similarity measure","score":0.73066294},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.5796688},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.5536493}],"concepts":[{"id":"https://openalex.org/C2776517306","wikidata":"https://www.wikidata.org/wiki/Q29017317","display_name":"Similarity measure","level":2,"score":0.73066294},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.63208455},{"id":"https://openalex.org/C2780009758","wikidata":"https://www.wikidata.org/wiki/Q6804172","display_name":"Measure (data warehouse)","level":2,"score":0.6301272},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.5796688},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.5536493},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.53602993},{"id":"https://openalex.org/C182335926","wikidata":"https://www.wikidata.org/wiki/Q17093020","display_name":"Kernel principal component analysis","level":4,"score":0.49195716},{"id":"https://openalex.org/C27438332","wikidata":"https://www.wikidata.org/wiki/Q2873","display_name":"Principal component analysis","level":2,"score":0.48410213},{"id":"https://openalex.org/C158622935","wikidata":"https://www.wikidata.org/wiki/Q660848","display_name":"Nonlinear system","level":2,"score":0.47004193},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.41901937},{"id":"https://openalex.org/C122280245","wikidata":"https://www.wikidata.org/wiki/Q620622","display_name":"Kernel method","level":3,"score":0.3894452},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.3614865},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.26018858},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.18323982},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.17097291},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.10779676},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.08624902},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.080720365},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/igarss.2004.1370400","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":7,"referenced_works":["https://openalex.org/W2009539575","https://openalex.org/W2010319424","https://openalex.org/W2140095548","https://openalex.org/W2144188273","https://openalex.org/W2163647352","https://openalex.org/W235732098","https://openalex.org/W2906217354"],"related_works":["https://openalex.org/W3138125914","https://openalex.org/W2944973397","https://openalex.org/W2753886092","https://openalex.org/W2398887903","https://openalex.org/W2379488555","https://openalex.org/W2152632846","https://openalex.org/W2127229869","https://openalex.org/W2014683590","https://openalex.org/W2004465977","https://openalex.org/W1992961908"],"abstract_inverted_index":{"A":[0],"novel":[1],"method":[2,140],"for":[3,119],"spectral":[4,11,24,52,80,85,121,144],"similarity":[5,12,109,117,129,145],"measure,":[6,13,118],"which":[7],"is":[8,14,37,71,141],"called":[9],"nonlinear":[10,68],"presented":[15],"in":[16,47,108,143],"This":[17],"work.":[18],"In":[19,61],"this":[20,139],"method,":[21],"all":[22,78],"original":[23],"vectors":[25,53,81],"are,":[26],"firstly,":[27],"nonlinearly":[28,132],"transformed":[29,51,133],"into":[30],"a":[31,41],"feature":[32,48],"space.":[33,49,60],"Next,":[34],"kernel":[35,62,75],"PCA":[36],"used":[38,125],"to":[39,126],"construct":[40],"set":[42],"of":[43,90],"orthogonal":[44,58],"coordinate":[45,59],"base":[46],"All":[50],"are":[54,82],"projected":[55,79],"onto":[56],"the":[57,67,97,104,106,128],"principal":[63],"component":[64],"analysis":[65],"(KPCA),":[66],"translation":[69],"function":[70],"implicatively":[72],"implemented":[73],"by":[74,84],"function.":[76],"Moreover,":[77],"constrained":[83],"continuum":[86,91],"removal":[87,92],"curve.":[88],"Because":[89],"curve,":[93],"various":[94],"bands":[95],"contribute":[96],"similar":[98],"measurement":[99],"differently.":[100],"The":[101],"more":[102,105],"absorption,":[103],"contribution":[107],"measurement.":[110],"At":[111],"last,":[112],"linear":[113,116],"or":[114],"general":[115],"example":[120],"angle":[122],"mapper,":[123],"was":[124],"measure":[127],"between":[130],"two":[131],"spectra.":[134],"Our":[135],"experiments":[136],"show":[137],"that":[138],"effective":[142],"measure.":[146]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2171735883","counts_by_year":[],"updated_date":"2025-03-23T08:35:12.819138","created_date":"2016-06-24"}