{"id":"https://openalex.org/W2127083196","doi":"https://doi.org/10.1109/igarss.2003.1294210","title":"Speckle reduction for remote-sensing images using contextual hidden Markov tree model","display_name":"Speckle reduction for remote-sensing images using contextual hidden Markov tree model","publication_year":2004,"publication_date":"2004-07-08","ids":{"openalex":"https://openalex.org/W2127083196","doi":"https://doi.org/10.1109/igarss.2003.1294210","mag":"2127083196"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/igarss.2003.1294210","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5108226794","display_name":"Ming-Yu Shih","orcid":null},"institutions":[{"id":"https://openalex.org/I181190486","display_name":"NTL Institute for Applied Behavioral Science","ror":"https://ror.org/01cs7w326","country_code":"US","type":"nonprofit","lineage":["https://openalex.org/I181190486"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"None Ming-Yu Shih","raw_affiliation_strings":["Nati nal Central University"],"affiliations":[{"raw_affiliation_string":"Nati nal Central University","institution_ids":["https://openalex.org/I181190486"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5069031451","display_name":"Din-Chang Tseng","orcid":"https://orcid.org/0000-0002-0903-1191"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"None Din-Chang Tseng","raw_affiliation_strings":["\u8cc7\u8a0a\u5de5\u7a0b\u5b78\u7cfb"],"affiliations":[{"raw_affiliation_string":"\u8cc7\u8a0a\u5de5\u7a0b\u5b78\u7cfb","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":61},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10801","display_name":"Synthetic Aperture Radar (SAR) Applications and Techniques","score":0.9963,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/tree","display_name":"Tree (set theory)","score":0.5296062},{"id":"https://openalex.org/keywords/decision-tree-model","display_name":"Decision tree model","score":0.44251627}],"concepts":[{"id":"https://openalex.org/C23224414","wikidata":"https://www.wikidata.org/wiki/Q176769","display_name":"Hidden Markov model","level":2,"score":0.83779407},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.65554106},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6378388},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6344975},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.6293324},{"id":"https://openalex.org/C47432892","wikidata":"https://www.wikidata.org/wiki/Q831390","display_name":"Wavelet","level":2,"score":0.60921335},{"id":"https://openalex.org/C163836022","wikidata":"https://www.wikidata.org/wiki/Q6771326","display_name":"Markov model","level":3,"score":0.55991286},{"id":"https://openalex.org/C113174947","wikidata":"https://www.wikidata.org/wiki/Q2859736","display_name":"Tree (set theory)","level":2,"score":0.5296062},{"id":"https://openalex.org/C111335779","wikidata":"https://www.wikidata.org/wiki/Q3454686","display_name":"Reduction (mathematics)","level":2,"score":0.48299515},{"id":"https://openalex.org/C196216189","wikidata":"https://www.wikidata.org/wiki/Q2867","display_name":"Wavelet transform","level":3,"score":0.46596885},{"id":"https://openalex.org/C56289965","wikidata":"https://www.wikidata.org/wiki/Q5249246","display_name":"Decision tree model","level":3,"score":0.44251627},{"id":"https://openalex.org/C98763669","wikidata":"https://www.wikidata.org/wiki/Q176645","display_name":"Markov chain","level":2,"score":0.34487534},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3278591},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.2901625},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.20031053},{"id":"https://openalex.org/C84525736","wikidata":"https://www.wikidata.org/wiki/Q831366","display_name":"Decision tree","level":2,"score":0.15496504},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/igarss.2003.1294210","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.45,"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":10,"referenced_works":["https://openalex.org/W119981475","https://openalex.org/W1567306314","https://openalex.org/W2061052441","https://openalex.org/W2065391104","https://openalex.org/W2111727749","https://openalex.org/W2134929491","https://openalex.org/W2153168413","https://openalex.org/W2168796889","https://openalex.org/W2169280406","https://openalex.org/W4285719527"],"related_works":["https://openalex.org/W2804608325","https://openalex.org/W2379938888","https://openalex.org/W2354322608","https://openalex.org/W2194396582","https://openalex.org/W2134386692","https://openalex.org/W2116722627","https://openalex.org/W2084326697","https://openalex.org/W2082284720","https://openalex.org/W2027903142","https://openalex.org/W1510894296"],"abstract_inverted_index":{"We":[0],"propose":[1],"a":[2,58],"contextual":[3],"hidden":[4,15,44,55,63],"Markov":[5,16],"tree":[6,17],"(CHMT)":[7],"model":[8,19,29,87,110,117,129,136],"by":[9],"adding":[10,37],"intrascale":[11],"dependences":[12],"in":[13,46,102],"the":[14,28,38,47,66,73,77,82,85,91,103,107,115,124,127,134],"(HMT)":[18],"to":[20],"capture":[21],"more":[22],"wavelet":[23,59,97],"clustering":[24,94],"property":[25],"and":[26,61,90,93],"apply":[27],"for":[30,119],"SAR":[31],"image":[32,120],"despeckling.":[33,121],"Instead":[34],"of":[35,57,65,76,84,96],"directly":[36],"transition":[39,52],"probabilities":[40,53],"between":[41,54],"two":[42],"adjacent":[43,74],"states":[45,56,64],"HMT":[48,86,116,135],"model,":[49],"we":[50],"add":[51],"coefficient":[60],"several":[62],"virtual":[67],"coefficients":[68,75,98],"that":[69,81],"are":[70,99],"duplicated":[71],"from":[72],"considered":[78],"coefficient,":[79],"such":[80],"merit":[83],"is":[88],"kept,":[89],"persistent":[92],"properties":[95],"completed":[100],"described":[101],"model.":[104],"In":[105],"experiments,":[106],"proposed":[108],"CHMT":[109,128],"produced":[111,118],"better":[112],"results":[113],"than":[114,133],"Furthermore,":[122],"with":[123],"same":[125],"results,":[126],"needs":[130],"fewer":[131],"iterations":[132],"needs.":[137]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2127083196","counts_by_year":[],"updated_date":"2024-12-10T14:16:58.471381","created_date":"2016-06-24"}