{"id":"https://openalex.org/W3212167535","doi":"https://doi.org/10.1109/iecon48115.2021.9589346","title":"Real-time personnel counting of indoor area division based on improved YOLOV4-Tiny","display_name":"Real-time personnel counting of indoor area division based on improved YOLOV4-Tiny","publication_year":2021,"publication_date":"2021-10-13","ids":{"openalex":"https://openalex.org/W3212167535","doi":"https://doi.org/10.1109/iecon48115.2021.9589346","mag":"3212167535"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iecon48115.2021.9589346","pdf_url":null,"source":{"id":"https://openalex.org/S4363608618","display_name":"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5002937277","display_name":"Wei Feng Wen","orcid":null},"institutions":[{"id":"https://openalex.org/I23632641","display_name":"Shanghai University of Electric Power","ror":"https://ror.org/02w4tny03","country_code":"CN","type":"education","lineage":["https://openalex.org/I23632641"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wei Wen","raw_affiliation_strings":["College of Automation Engineering, Shanghai University of Electric Power, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"College of Automation Engineering, Shanghai University of Electric Power, Shanghai, China","institution_ids":["https://openalex.org/I23632641"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100676785","display_name":"Fei Xia","orcid":"https://orcid.org/0000-0003-4343-1444"},"institutions":[{"id":"https://openalex.org/I23632641","display_name":"Shanghai University of Electric Power","ror":"https://ror.org/02w4tny03","country_code":"CN","type":"education","lineage":["https://openalex.org/I23632641"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Fei Xia","raw_affiliation_strings":["College of Automation Engineering, Shanghai University of Electric Power, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"College of Automation Engineering, Shanghai University of Electric Power, Shanghai, China","institution_ids":["https://openalex.org/I23632641"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5031371477","display_name":"Xia Lin","orcid":"https://orcid.org/0000-0002-6749-5218"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Lin Xia","raw_affiliation_strings":["ArcTron Data & Innovation Technology Co., LTD, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"ArcTron Data & Innovation Technology Co., LTD, Shanghai, China","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.123,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.522735,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":67,"max":72},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11963","display_name":"Impact of Light on Environment and Health","score":0.9934,"subfield":{"id":"https://openalex.org/subfields/2306","display_name":"Global and Planetary Change"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9892,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.46591118}],"concepts":[{"id":"https://openalex.org/C60798267","wikidata":"https://www.wikidata.org/wiki/Q1226939","display_name":"Division (mathematics)","level":2,"score":0.7936617},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7662239},{"id":"https://openalex.org/C2780165032","wikidata":"https://www.wikidata.org/wiki/Q16869822","display_name":"Energy consumption","level":2,"score":0.68052894},{"id":"https://openalex.org/C79403827","wikidata":"https://www.wikidata.org/wiki/Q3988","display_name":"Real-time computing","level":1,"score":0.534178},{"id":"https://openalex.org/C186370098","wikidata":"https://www.wikidata.org/wiki/Q442787","display_name":"Energy (signal processing)","level":2,"score":0.49692062},{"id":"https://openalex.org/C204241405","wikidata":"https://www.wikidata.org/wiki/Q461499","display_name":"Transformation (genetics)","level":3,"score":0.4853636},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.46591118},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.41211075},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.3531968},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.10620898},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C94375191","wikidata":"https://www.wikidata.org/wiki/Q11205","display_name":"Arithmetic","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/iecon48115.2021.9589346","pdf_url":null,"source":{"id":"https://openalex.org/S4363608618","display_name":"IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/7","display_name":"Affordable and clean energy","score":0.91}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":5,"referenced_works":["https://openalex.org/W2024350586","https://openalex.org/W2082392699","https://openalex.org/W2570343428","https://openalex.org/W2914947208","https://openalex.org/W3011696708"],"related_works":["https://openalex.org/W4252317921","https://openalex.org/W4236696036","https://openalex.org/W4213091376","https://openalex.org/W3094080891","https://openalex.org/W3042882560","https://openalex.org/W2330973770","https://openalex.org/W2087502554","https://openalex.org/W2038973998","https://openalex.org/W1979495818","https://openalex.org/W1975640583"],"abstract_inverted_index":{"With":[0],"the":[1,25,33,42,58,70,74,78,88,100,110,120,142],"growth":[2],"of":[3,18,37,45,60,77],"building":[4],"energy":[5,12,52],"consumption,":[6],"determining":[7],"how":[8],"to":[9,124],"effectively":[10],"reduce":[11,51],"waste":[13],"has":[14],"become":[15],"a":[16],"matter":[17],"concern.":[19],"We":[20],"believe":[21],"that":[22,119],"by":[23,64,139],"acquiring":[24],"basic":[26],"data":[27],"for":[28,92],"intelligent":[29,43],"regulation":[30],"such":[31],"as":[32],"location":[34],"and":[35,49,141],"number":[36],"personnel,":[38],"we":[39],"can":[40],"achieve":[41],"adjustment":[44],"indoor":[46,62,72,97,111,129],"energy-using":[47],"equipment":[48],"ultimately":[50],"consumption.":[53],"First,":[54],"this":[55,105],"study":[56,106],"describes":[57],"division":[59],"an":[61],"scene":[63],"space":[65],"coordinate":[66],"transformation.":[67],"Second,":[68],"considering":[69],"complex":[71,96,128],"scenes,":[73],"main":[75],"module":[76],"backbone":[79],"feature":[80],"network":[81],"is":[82,107,131,137],"improved":[83,101,121],"based":[84],"on":[85],"YOLOV4-Tiny,":[86],"making":[87],"algorithm":[89,102],"more":[90],"suitable":[91],"people":[93,126],"detection":[94,143],"in":[95,104,109,127],"environments.":[98],"Finally,":[99],"adopted":[103],"verified":[108],"real-time":[112],"monitoring":[113],"scene.":[114],"The":[115,133],"experimental":[116],"results":[117],"show":[118],"network's":[122],"ability":[123],"detect":[125],"scenes":[130],"improved.":[132],"overall":[134],"average":[135],"accuracy":[136],"increased":[138],"18.15%,":[140],"speed":[144],"reaches":[145],"about":[146],"73":[147],"Frames":[148],"Per":[149],"Second":[150],"(FPS).":[151]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3212167535","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1}],"updated_date":"2025-01-05T09:52:38.747948","created_date":"2021-11-22"}