{"id":"https://openalex.org/W2094657530","doi":"https://doi.org/10.1109/idaacs.2011.6072854","title":"Financial modeling using Gaussian process models","display_name":"Financial modeling using Gaussian process models","publication_year":2011,"publication_date":"2011-09-01","ids":{"openalex":"https://openalex.org/W2094657530","doi":"https://doi.org/10.1109/idaacs.2011.6072854","mag":"2094657530"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/idaacs.2011.6072854","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5004094184","display_name":"Dejan Petelin","orcid":null},"institutions":[{"id":"https://openalex.org/I3006985408","display_name":"Jo\u017eef Stefan Institute","ror":"https://ror.org/05060sz93","country_code":"SI","type":"funder","lineage":["https://openalex.org/I3006985408"]}],"countries":["SI"],"is_corresponding":false,"raw_author_name":"Dejan Petelin","raw_affiliation_strings":["Institute Jozef Stefan, Ljubljana, Slovenia"],"affiliations":[{"raw_affiliation_string":"Institute Jozef Stefan, Ljubljana, Slovenia","institution_ids":["https://openalex.org/I3006985408"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5023110701","display_name":"Jan \u0160indel\u00e1\u0159","orcid":null},"institutions":[{"id":"https://openalex.org/I4210119419","display_name":"Czech Academy of Sciences, Institute of Information Theory and Automation","ror":"https://ror.org/03h1hsz49","country_code":"CZ","type":"facility","lineage":["https://openalex.org/I202391551","https://openalex.org/I4210119419"]}],"countries":["CZ"],"is_corresponding":false,"raw_author_name":"Jan Sindelar","raw_affiliation_strings":["Institute of Information Theory and Automation, Chinese Academy of Sciences (CAS), Prague, Czech Republic"],"affiliations":[{"raw_affiliation_string":"Institute of Information Theory and Automation, Chinese Academy of Sciences (CAS), Prague, Czech Republic","institution_ids":["https://openalex.org/I4210119419"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5054902535","display_name":"Jan P\u0159ikryl","orcid":"https://orcid.org/0000-0003-3371-4678"},"institutions":[{"id":"https://openalex.org/I4210119419","display_name":"Czech Academy of Sciences, Institute of Information Theory and Automation","ror":"https://ror.org/03h1hsz49","country_code":"CZ","type":"facility","lineage":["https://openalex.org/I202391551","https://openalex.org/I4210119419"]}],"countries":["CZ"],"is_corresponding":false,"raw_author_name":"Jan Prikryl","raw_affiliation_strings":["Institute of Information Theory and Automation, Chinese Academy of Sciences (CAS), Prague, Czech Republic"],"affiliations":[{"raw_affiliation_string":"Institute of Information Theory and Automation, Chinese Academy of Sciences (CAS), Prague, Czech Republic","institution_ids":["https://openalex.org/I4210119419"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5078843430","display_name":"Ju\u0161 Kocijan","orcid":"https://orcid.org/0000-0002-1221-946X"},"institutions":[{"id":"https://openalex.org/I192455894","display_name":"University of Nova Gorica","ror":"https://ror.org/00mw0tw28","country_code":"SI","type":"education","lineage":["https://openalex.org/I192455894"]},{"id":"https://openalex.org/I3006985408","display_name":"Jo\u017eef Stefan Institute","ror":"https://ror.org/05060sz93","country_code":"SI","type":"funder","lineage":["https://openalex.org/I3006985408"]}],"countries":["SI"],"is_corresponding":false,"raw_author_name":"Jus Kocijan","raw_affiliation_strings":["Institute Jozef Stefan, Ljubljana, Slovenia","University of Nova Gorica, Nova Gorica, Slovenia"],"affiliations":[{"raw_affiliation_string":"University of Nova Gorica, Nova Gorica, Slovenia","institution_ids":["https://openalex.org/I192455894"]},{"raw_affiliation_string":"Institute Jozef Stefan, Ljubljana, Slovenia","institution_ids":["https://openalex.org/I3006985408"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":3,"citation_normalized_percentile":{"value":0.475931,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":78},"biblio":{"volume":"29","issue":null,"first_page":"672","last_page":"677"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9974,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9974,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9915,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11918","display_name":"Forecasting Techniques and Applications","score":0.9913,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/vector-autoregression","display_name":"Vector autoregression","score":0.55032253},{"id":"https://openalex.org/keywords/predictability","display_name":"Predictability","score":0.5430173},{"id":"https://openalex.org/keywords/financial-modeling","display_name":"Financial modeling","score":0.5217648},{"id":"https://openalex.org/keywords/financial-econometrics","display_name":"Financial econometrics","score":0.4981568},{"id":"https://openalex.org/keywords/bayesian-vector-autoregression","display_name":"Bayesian vector autoregression","score":0.48085934},{"id":"https://openalex.org/keywords/market-data","display_name":"Market data","score":0.48006424},{"id":"https://openalex.org/keywords/efficient-market-hypothesis","display_name":"Efficient-market hypothesis","score":0.4251213}],"concepts":[{"id":"https://openalex.org/C19244329","wikidata":"https://www.wikidata.org/wiki/Q208697","display_name":"Financial market","level":2,"score":0.62082434},{"id":"https://openalex.org/C149782125","wikidata":"https://www.wikidata.org/wiki/Q160039","display_name":"Econometrics","level":1,"score":0.55618393},{"id":"https://openalex.org/C133029050","wikidata":"https://www.wikidata.org/wiki/Q385593","display_name":"Vector autoregression","level":2,"score":0.55032253},{"id":"https://openalex.org/C197640229","wikidata":"https://www.wikidata.org/wiki/Q2534066","display_name":"Predictability","level":2,"score":0.5430173},{"id":"https://openalex.org/C23925645","wikidata":"https://www.wikidata.org/wiki/Q5449731","display_name":"Financial modeling","level":2,"score":0.5217648},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5075239},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.5028598},{"id":"https://openalex.org/C67616677","wikidata":"https://www.wikidata.org/wiki/Q657107","display_name":"Financial econometrics","level":4,"score":0.4981568},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.4929309},{"id":"https://openalex.org/C10138342","wikidata":"https://www.wikidata.org/wiki/Q43015","display_name":"Finance","level":1,"score":0.49046585},{"id":"https://openalex.org/C137703641","wikidata":"https://www.wikidata.org/wiki/Q4874480","display_name":"Bayesian vector autoregression","level":3,"score":0.48085934},{"id":"https://openalex.org/C114118609","wikidata":"https://www.wikidata.org/wiki/Q3036837","display_name":"Market data","level":2,"score":0.48006424},{"id":"https://openalex.org/C61326573","wikidata":"https://www.wikidata.org/wiki/Q1496376","display_name":"Gaussian process","level":3,"score":0.47935277},{"id":"https://openalex.org/C29368100","wikidata":"https://www.wikidata.org/wiki/Q724931","display_name":"Efficient-market hypothesis","level":4,"score":0.4251213},{"id":"https://openalex.org/C91602232","wikidata":"https://www.wikidata.org/wiki/Q756115","display_name":"Volatility (finance)","level":2,"score":0.4125387},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.358348},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3546214},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.34134597},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.32253516},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.18044463},{"id":"https://openalex.org/C196390999","wikidata":"https://www.wikidata.org/wiki/Q11655436","display_name":"Indirect finance","level":3,"score":0.12660637},{"id":"https://openalex.org/C2780299701","wikidata":"https://www.wikidata.org/wiki/Q475000","display_name":"Stock market","level":3,"score":0.11651385},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.1047993},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C2780762169","wikidata":"https://www.wikidata.org/wiki/Q5905368","display_name":"Horse","level":2,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/idaacs.2011.6072854","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":23,"referenced_works":["https://openalex.org/W1568345957","https://openalex.org/W1571870753","https://openalex.org/W1988518729","https://openalex.org/W1994005439","https://openalex.org/W2012079387","https://openalex.org/W2037306524","https://openalex.org/W2090637028","https://openalex.org/W2092270509","https://openalex.org/W2116988722","https://openalex.org/W2118256727","https://openalex.org/W2121224351","https://openalex.org/W2126877537","https://openalex.org/W2130819374","https://openalex.org/W2131773668","https://openalex.org/W2248380332","https://openalex.org/W2334018742","https://openalex.org/W2905148377","https://openalex.org/W3124298675","https://openalex.org/W3125598125","https://openalex.org/W4211049957","https://openalex.org/W4231546411","https://openalex.org/W4239934782","https://openalex.org/W4301824443"],"related_works":["https://openalex.org/W570295690","https://openalex.org/W4389204594","https://openalex.org/W3148444694","https://openalex.org/W3142003473","https://openalex.org/W3141954912","https://openalex.org/W3124856293","https://openalex.org/W2498938540","https://openalex.org/W2380421148","https://openalex.org/W1909266783","https://openalex.org/W1731555187"],"abstract_inverted_index":{"In":[0],"the":[1,6,14,25,43,61],"1960s":[2],"E.":[3],"Fama":[4],"developed":[5],"efficient":[7,18],"market":[8,16,91],"hypothesis":[9],"(EMH)":[10],"which":[11],"asserts":[12],"that":[13,80,161,174],"financial":[15,58,86,118,140,167,180],"is":[17,71,78,144,162],"if":[19],"its":[20],"prices":[21],"are":[22,126,169,177],"formed":[23],"on":[24],"basis":[26],"of":[27,63],"all":[28],"publicly":[29],"available":[30],"information.":[31],"That":[32],"means":[33],"technical":[34],"analysis":[35],"cannot":[36],"be":[37],"used":[38,164],"to":[39,84,90,117,139,146,179],"predict":[40,85],"and":[41,51,57,70,94,111,131,158],"beat":[42],"market.":[44],"Since":[45],"then,":[46],"it":[47,77],"was":[48,52],"widely":[49],"examined":[50],"mostly":[53],"accepted":[54],"by":[55],"mathematicians":[56],"engineers.":[59],"However,":[60],"predictability":[62],"financial-market":[64],"returns":[65,87],"remains":[66],"an":[67],"open":[68],"problem":[69],"discussed":[72],"in":[73,98,132,165],"many":[74],"publications.":[75],"Usually,":[76],"concluded":[79],"a":[81,154],"model":[82,143,157,160],"able":[83],"should":[88],"adapt":[89],"changes":[92],"quickly":[93],"catch":[95],"local":[96],"dependencies":[97],"price":[99],"movements.":[100],"The":[101,171],"Bayesian":[102,129],"vector":[103,108],"autoregression":[104],"(BVAR)":[105],"models,":[106],"support":[107],"machines":[109],"(SVM)":[110],"some":[112],"other":[113],"were":[114],"already":[115],"applied":[116],"data":[119,148,181],"quite":[120],"succesfully.":[121],"Gaussian":[122],"process":[123],"(GP)":[124],"models":[125,130,176],"emerging":[127],"non-parametric":[128],"this":[133],"paper":[134],"we":[135],"test":[136],"their":[137],"applicability":[138],"data.":[141],"GP":[142,175],"fitted":[145],"daily":[147],"from":[149],"U.S.":[150],"commodity":[151],"markets.":[152],"For":[153],"comparison":[155],"BVAR":[156,185],"benchmark":[159],"commonly":[163],"todays":[166],"mathematics":[168],"chosen.":[170],"results":[172],"indicate":[173],"applicable":[178],"as":[182,184],"well":[183],"models.":[186]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2094657530","counts_by_year":[{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":1},{"year":2015,"cited_by_count":1}],"updated_date":"2025-03-20T14:20:37.894608","created_date":"2016-06-24"}