{"id":"https://openalex.org/W4238059471","doi":"https://doi.org/10.1109/ictai.2007.126","title":"Adaptive Nonmonotone Conjugate Gradient Training Algorithm for Recurrent Neural Networks","display_name":"Adaptive Nonmonotone Conjugate Gradient Training Algorithm for Recurrent Neural Networks","publication_year":2007,"publication_date":"2007-10-01","ids":{"openalex":"https://openalex.org/W4238059471","doi":"https://doi.org/10.1109/ictai.2007.126"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ictai.2007.126","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5083760771","display_name":"Chun\u2010Cheng Peng","orcid":null},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Chun-Cheng Peng","raw_affiliation_strings":["School of Computer Science and Information Systems Birkbeck College, University of London, USA"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Information Systems Birkbeck College, University of London, USA","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5050583872","display_name":"George D. Magoulas","orcid":"https://orcid.org/0000-0003-1884-0772"},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"George D. Magoulas","raw_affiliation_strings":["School of Computer Science and Information Systems Birkbeck College, University of London, USA"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Information Systems Birkbeck College, University of London, USA","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.847,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":11,"citation_normalized_percentile":{"value":0.881104,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":83,"max":84},"biblio":{"volume":"2","issue":null,"first_page":"374","last_page":"381"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12611","display_name":"Neural Networks and Reservoir Computing","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feedforward-neural-network","display_name":"Feedforward neural network","score":0.5864479},{"id":"https://openalex.org/keywords/feed-forward","display_name":"Feed forward","score":0.54024625},{"id":"https://openalex.org/keywords/conjugate","display_name":"Conjugate","score":0.50537163}],"concepts":[{"id":"https://openalex.org/C81184566","wikidata":"https://www.wikidata.org/wiki/Q1191895","display_name":"Conjugate gradient method","level":2,"score":0.8376374},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.65614206},{"id":"https://openalex.org/C147168706","wikidata":"https://www.wikidata.org/wiki/Q1457734","display_name":"Recurrent neural network","level":3,"score":0.62552834},{"id":"https://openalex.org/C47702885","wikidata":"https://www.wikidata.org/wiki/Q5441227","display_name":"Feedforward neural network","level":3,"score":0.5864479},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.58585405},{"id":"https://openalex.org/C38858127","wikidata":"https://www.wikidata.org/wiki/Q5441228","display_name":"Feed forward","level":2,"score":0.54024625},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.53909624},{"id":"https://openalex.org/C197336794","wikidata":"https://www.wikidata.org/wiki/Q5161150","display_name":"Conjugate","level":2,"score":0.50537163},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.38481146},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.23600361},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.09936422},{"id":"https://openalex.org/C133731056","wikidata":"https://www.wikidata.org/wiki/Q4917288","display_name":"Control engineering","level":1,"score":0.09040743},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ictai.2007.126","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":42,"referenced_works":["https://openalex.org/W1487011864","https://openalex.org/W1488184357","https://openalex.org/W1506467492","https://openalex.org/W1524896345","https://openalex.org/W1538193578","https://openalex.org/W1546266651","https://openalex.org/W1555885222","https://openalex.org/W1559775854","https://openalex.org/W1572309408","https://openalex.org/W1583170846","https://openalex.org/W1588047450","https://openalex.org/W1592657385","https://openalex.org/W1596788205","https://openalex.org/W1623284604","https://openalex.org/W1883974618","https://openalex.org/W194445265","https://openalex.org/W1993741432","https://openalex.org/W2012231377","https://openalex.org/W2015157588","https://openalex.org/W2015307405","https://openalex.org/W2043430160","https://openalex.org/W2047687559","https://openalex.org/W2075588658","https://openalex.org/W2083186188","https://openalex.org/W2102858072","https://openalex.org/W2107878631","https://openalex.org/W2114513008","https://openalex.org/W2118700449","https://openalex.org/W2119074614","https://openalex.org/W2119481995","https://openalex.org/W2123716044","https://openalex.org/W2124972241","https://openalex.org/W2149736651","https://openalex.org/W2154890045","https://openalex.org/W2155041441","https://openalex.org/W2161070585","https://openalex.org/W2166681504","https://openalex.org/W2624936898","https://openalex.org/W291003596","https://openalex.org/W4210776873","https://openalex.org/W4253674496","https://openalex.org/W760200739"],"related_works":["https://openalex.org/W4390752998","https://openalex.org/W4311212821","https://openalex.org/W2794343888","https://openalex.org/W2524120878","https://openalex.org/W2158578859","https://openalex.org/W2115072676","https://openalex.org/W2102065768","https://openalex.org/W2045727192","https://openalex.org/W1529660427","https://openalex.org/W1503783781"],"abstract_inverted_index":{"Recurrent":[0],"networks":[1,12],"constitute":[2],"an":[3,63],"elegant":[4],"way":[5],"of":[6,10,21,23,78],"increasing":[7],"the":[8,19,68,85],"capacity":[9],"feedforward":[11],"to":[13,32],"deal":[14],"with":[15,62],"complex":[16],"data":[17],"in":[18,88],"form":[20],"sequences":[22,38],"vectors.":[24],"They":[25],"are":[26],"well":[27],"known":[28],"for":[29,39,55,67],"their":[30],"power":[31],"model":[33],"temporal":[34],"dependencies":[35],"and":[36,42],"process":[37],"classification,":[40],"recognition,":[41],"transduction.":[43],"In":[44],"this":[45,76],"paper,":[46],"we":[47],"propose":[48],"a":[49],"nonmonotone":[50,69],"conjugate":[51,79],"gradient":[52,80],"training":[53],"algorithm":[54],"recurrent":[56,94],"neural":[57],"networks,":[58],"which":[59],"is":[60,81],"equipped":[61],"adaptive":[64],"tuning":[65],"strategy":[66],"learning":[70],"horizon.":[71],"Simulation":[72],"results":[73],"show":[74],"that":[75],"modification":[77],"more":[82],"effective":[83],"than":[84],"original":[86],"CG":[87],"four":[89],"applications":[90],"using":[91],"three":[92],"different":[93],"network":[95],"architectures.":[96]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4238059471","counts_by_year":[{"year":2023,"cited_by_count":2},{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":2},{"year":2017,"cited_by_count":1},{"year":2014,"cited_by_count":1},{"year":2013,"cited_by_count":1}],"updated_date":"2025-03-21T03:15:24.304746","created_date":"2022-05-12"}