{"id":"https://openalex.org/W2141993422","doi":"https://doi.org/10.1109/icsmc.2008.4811692","title":"SVM ranking with backward search for feature selection in type II diabetes databases","display_name":"SVM ranking with backward search for feature selection in type II diabetes databases","publication_year":2008,"publication_date":"2008-10-01","ids":{"openalex":"https://openalex.org/W2141993422","doi":"https://doi.org/10.1109/icsmc.2008.4811692","mag":"2141993422"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icsmc.2008.4811692","pdf_url":null,"source":{"id":"https://openalex.org/S4210195764","display_name":"Conference proceedings/Conference proceedings - IEEE International Conference on Systems, Man, and Cybernetics","issn_l":"1062-922X","issn":["1062-922X","2577-1655"],"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5030649422","display_name":"Sarojini Balakrishnan","orcid":"https://orcid.org/0000-0002-7740-7058"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sarojini Balakrishnan","raw_affiliation_strings":["Dept. of Comput. Applic., K.L.N. Coll. of Inf. Technol., Madurai"],"affiliations":[{"raw_affiliation_string":"Dept. of Comput. Applic., K.L.N. Coll. of Inf. Technol., Madurai","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5113683997","display_name":"Rajath Arakere Narayanaswamy","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ramaraj Narayanaswamy","raw_affiliation_strings":["Dept. of Comput. Sci. & Eng., G.K.M. Coll. of Eng. & Technol., Chennai"],"affiliations":[{"raw_affiliation_string":"Dept. of Comput. Sci. & Eng., G.K.M. Coll. of Eng. & Technol., Chennai","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5022010331","display_name":"S. Nickolas","orcid":"https://orcid.org/0000-0002-0703-3839"},"institutions":[{"id":"https://openalex.org/I122964287","display_name":"National Institute of Technology Tiruchirappalli","ror":"https://ror.org/047x65e68","country_code":"IN","type":"education","lineage":["https://openalex.org/I122964287"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Nickolas Savarimuthu","raw_affiliation_strings":["Dept. of Comput. Applic., Nat. Inst. of Technol., Tiruchirappalli"],"affiliations":[{"raw_affiliation_string":"Dept. of Comput. Applic., Nat. Inst. of Technol., Tiruchirappalli","institution_ids":["https://openalex.org/I122964287"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5058145522","display_name":"Rita Samikannu","orcid":null},"institutions":[{"id":"https://openalex.org/I876193797","display_name":"Vellore Institute of Technology University","ror":"https://ror.org/00qzypv28","country_code":"IN","type":"education","lineage":["https://openalex.org/I876193797"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Rita Samikannu","raw_affiliation_strings":["VIT Business School, VIT University, Vellore"],"affiliations":[{"raw_affiliation_string":"VIT Business School, VIT University, Vellore","institution_ids":["https://openalex.org/I876193797"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":4.679,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":49,"citation_normalized_percentile":{"value":0.97619,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":94,"max":95},"biblio":{"volume":null,"issue":null,"first_page":"2628","last_page":"2633"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11396","display_name":"Artificial Intelligence in Healthcare","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/3605","display_name":"Health Information Management"},"field":{"id":"https://openalex.org/fields/36","display_name":"Health Professions"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11396","display_name":"Artificial Intelligence in Healthcare","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/3605","display_name":"Health Information Management"},"field":{"id":"https://openalex.org/fields/36","display_name":"Health Professions"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10538","display_name":"Data Mining Algorithms and Applications","score":0.9793,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.979,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/data-pre-processing","display_name":"Data pre-processing","score":0.61122084},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.43829137}],"concepts":[{"id":"https://openalex.org/C148483581","wikidata":"https://www.wikidata.org/wiki/Q446488","display_name":"Feature selection","level":2,"score":0.7504788},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7024027},{"id":"https://openalex.org/C10551718","wikidata":"https://www.wikidata.org/wiki/Q5227332","display_name":"Data pre-processing","level":2,"score":0.61122084},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.6013025},{"id":"https://openalex.org/C70518039","wikidata":"https://www.wikidata.org/wiki/Q16000077","display_name":"Dimensionality reduction","level":2,"score":0.57617915},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.5639181},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5521419},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.54741967},{"id":"https://openalex.org/C34736171","wikidata":"https://www.wikidata.org/wiki/Q918333","display_name":"Preprocessor","level":2,"score":0.52541924},{"id":"https://openalex.org/C189430467","wikidata":"https://www.wikidata.org/wiki/Q7293293","display_name":"Ranking (information retrieval)","level":2,"score":0.5216061},{"id":"https://openalex.org/C81917197","wikidata":"https://www.wikidata.org/wiki/Q628760","display_name":"Selection (genetic algorithm)","level":2,"score":0.45939088},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.43829137},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icsmc.2008.4811692","pdf_url":null,"source":{"id":"https://openalex.org/S4210195764","display_name":"Conference proceedings/Conference proceedings - IEEE International Conference on Systems, Man, and Cybernetics","issn_l":"1062-922X","issn":["1062-922X","2577-1655"],"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/16","display_name":"Peace, justice, and strong institutions","score":0.76}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":32,"referenced_works":["https://openalex.org/W133015606","https://openalex.org/W138217685","https://openalex.org/W1530010412","https://openalex.org/W1559923427","https://openalex.org/W1570713908","https://openalex.org/W1608549042","https://openalex.org/W1619226191","https://openalex.org/W1722431364","https://openalex.org/W1983024255","https://openalex.org/W1989344766","https://openalex.org/W1990748933","https://openalex.org/W1998560003","https://openalex.org/W2017337590","https://openalex.org/W202150751","https://openalex.org/W2033326122","https://openalex.org/W2043606064","https://openalex.org/W2078684405","https://openalex.org/W2084812512","https://openalex.org/W2110897879","https://openalex.org/W2119315254","https://openalex.org/W2128718068","https://openalex.org/W2130759652","https://openalex.org/W2132549764","https://openalex.org/W2134478553","https://openalex.org/W2140785063","https://openalex.org/W2146348450","https://openalex.org/W2167277498","https://openalex.org/W3017143921","https://openalex.org/W3146003712","https://openalex.org/W4236338840","https://openalex.org/W4285719527","https://openalex.org/W624372081"],"related_works":["https://openalex.org/W4248881655","https://openalex.org/W3092506759","https://openalex.org/W3010890513","https://openalex.org/W2989490741","https://openalex.org/W2482165163","https://openalex.org/W2390914021","https://openalex.org/W2367545121","https://openalex.org/W20047544","https://openalex.org/W138569904","https://openalex.org/W120741642"],"abstract_inverted_index":{"Clinical":[0],"databases":[1,60],"have":[2],"accumulated":[3],"large":[4],"quantities":[5],"of":[6,38,54,126,154,161,166,178,191,205,258,275],"information":[7],"about":[8],"patients":[9],"and":[10,21,93,112,120,135,216,236,295],"their":[11],"clinical":[12,206],"history.":[13],"Data":[14,82],"mining":[15,43,92,146,172],"is":[16,36,84,103,173],"the":[17,39,88,98,124,137,151,155,159,176,179,199,203,232,255,266,273],"search":[18],"for":[19,31,45,90,129,247],"relationships":[20],"patterns":[22],"within":[23],"this":[24,185,239],"data":[25,42,89,91,111,127,145,171],"that":[26,253,281],"could":[27,181],"provide":[28,196],"useful":[29],"knowledge":[30],"effective":[32],"decision-making.":[33],"Classification":[34],"analysis":[35,76],"one":[37],"widely":[40],"adopted":[41],"techniques":[44,160],"healthcare":[46],"applications":[47],"to":[48,86,96,201,271,289],"support":[49],"medical":[50,59,170,222],"diagnosis,":[51,223],"improving":[52,131,150],"quality":[53],"patient":[55],"care,":[56],"etc.":[57],"Usually":[58],"are":[61],"high":[62],"dimensional":[63],"in":[64,144,169,184,225],"nature.":[65],"If":[66],"a":[67,104,243],"training":[68],"dataset":[69],"contains":[70],"irrelevant":[71,119],"features":[72],"(i.e.,":[73],"attributes),":[74],"classification":[75,256,297],"may":[77,195],"produce":[78],"less":[79],"accurate":[80],"results.":[81],"pre-processing":[83],"required":[85],"prepare":[87],"machine":[94],"learning":[95],"increase":[97],"predictive":[99,133,152],"accuracy.":[100,298],"Feature":[101,193],"selection":[102,168,194,245,294],"preprocessing":[105],"technique":[106],"commonly":[107],"used":[108],"on":[109,265,292],"high-dimensional":[110],"its":[113],"purposes":[114],"include":[115],"reducing":[116,123,217],"dimensionality,":[117],"removing":[118],"redundant":[121],"features,":[122],"amount":[125],"needed":[128],"learning,":[130],"algorithms'":[132],"accuracy,":[134],"increasing":[136],"constructed":[138],"models'":[139],"comprehensibility.":[140],"Much":[141],"research":[142],"work":[143],"has":[147],"gone":[148],"into":[149],"accuracy":[153,215,257],"classifiers":[156],"by":[157],"applying":[158],"feature":[162,167,244,251,293],"selection.":[163],"The":[164,278],"importance":[165],"appreciable":[174],"as":[175],"diagnosis":[177],"disease":[180],"be":[182,231],"done":[183],"patient-care":[186],"activity":[187],"with":[188,198,284],"minimum":[189],"number":[190,204],"features.":[192],"us":[197],"means":[200],"reduce":[202],"measures":[207],"made":[208],"while":[209],"still":[210],"maintaining":[211],"or":[212],"even":[213],"enhancing":[214],"false":[218,226],"negative":[219,227],"rates.":[220],"In":[221,238],"reduction":[224],"rate":[228],"can,":[229],"literally,":[230],"difference":[233],"between":[234],"life":[235],"death.":[237],"paper":[240],"we":[241],"propose":[242],"approach":[246,287],"finding":[248],"an":[249],"optimum":[250],"subset":[252],"enhances":[254,296],"Naive":[259],".Bayes":[260],"classifier.":[261],"Experiments":[262],"were":[263],"conducted":[264],"Pima":[267],"Indian":[268],"Diabetes":[269],"Dataset":[270],"assess":[272],"effectiveness":[274],"our":[276],"approach.":[277],"results":[279],"confirm":[280],"SVM":[282],"Ranking":[283],"Backward":[285],"Search":[286],"leads":[288],"promising":[290],"improvement":[291]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2141993422","counts_by_year":[{"year":2024,"cited_by_count":5},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":5},{"year":2020,"cited_by_count":3},{"year":2019,"cited_by_count":3},{"year":2018,"cited_by_count":5},{"year":2017,"cited_by_count":5},{"year":2016,"cited_by_count":1},{"year":2015,"cited_by_count":2},{"year":2014,"cited_by_count":2},{"year":2013,"cited_by_count":5},{"year":2012,"cited_by_count":2}],"updated_date":"2024-12-21T11:52:55.498304","created_date":"2016-06-24"}