{"id":"https://openalex.org/W2136440763","doi":"https://doi.org/10.1109/icsipa.2013.6708036","title":"An adaptive threshold method for mass detection in mammographic images","display_name":"An adaptive threshold method for mass detection in mammographic images","publication_year":2013,"publication_date":"2013-10-01","ids":{"openalex":"https://openalex.org/W2136440763","doi":"https://doi.org/10.1109/icsipa.2013.6708036","mag":"2136440763"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icsipa.2013.6708036","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5051236746","display_name":"Mohamed Meselhy Eltoukhy","orcid":"https://orcid.org/0000-0003-0205-2210"},"institutions":[{"id":"https://openalex.org/I182023848","display_name":"Petronas (Malaysia)","ror":"https://ror.org/02tc7rm90","country_code":"MY","type":"funder","lineage":["https://openalex.org/I182023848"]}],"countries":["MY"],"is_corresponding":false,"raw_author_name":"Mohamed Meselhy Eltoukhy","raw_affiliation_strings":["Centre for Intell. Signal & Imaging Res. (CISIR), Univ. Teknol. PETRONAS, Tronoh, Malaysia"],"affiliations":[{"raw_affiliation_string":"Centre for Intell. Signal & Imaging Res. (CISIR), Univ. Teknol. PETRONAS, Tronoh, Malaysia","institution_ids":["https://openalex.org/I182023848"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5018883645","display_name":"Ibrahima Faye","orcid":"https://orcid.org/0000-0001-7777-1119"},"institutions":[{"id":"https://openalex.org/I182023848","display_name":"Petronas (Malaysia)","ror":"https://ror.org/02tc7rm90","country_code":"MY","type":"funder","lineage":["https://openalex.org/I182023848"]}],"countries":["MY"],"is_corresponding":false,"raw_author_name":"Ibrahima Faye","raw_affiliation_strings":["Centre for Intell. Signal & Imaging Res. (CISIR), Univ. Teknol. PETRONAS, Tronoh, Malaysia"],"affiliations":[{"raw_affiliation_string":"Centre for Intell. Signal & Imaging Res. (CISIR), Univ. Teknol. PETRONAS, Tronoh, Malaysia","institution_ids":["https://openalex.org/I182023848"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.482,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":13,"citation_normalized_percentile":{"value":0.8914,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":87,"max":88},"biblio":{"volume":null,"issue":null,"first_page":"374","last_page":"378"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9942,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T12994","display_name":"Infrared Thermography in Medicine","score":0.9903,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.4479536},{"id":"https://openalex.org/keywords/curvelet","display_name":"Curvelet","score":0.41823345}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.79355},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.70866996},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6641575},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.5671382},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.54481936},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.54396945},{"id":"https://openalex.org/C47432892","wikidata":"https://www.wikidata.org/wiki/Q831390","display_name":"Wavelet","level":2,"score":0.51858807},{"id":"https://openalex.org/C2780472235","wikidata":"https://www.wikidata.org/wiki/Q324634","display_name":"Mammography","level":4,"score":0.4905228},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.4865743},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.45644552},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.4479536},{"id":"https://openalex.org/C131720326","wikidata":"https://www.wikidata.org/wiki/Q5196075","display_name":"Curvelet","level":4,"score":0.41823345},{"id":"https://openalex.org/C196216189","wikidata":"https://www.wikidata.org/wiki/Q2867","display_name":"Wavelet transform","level":3,"score":0.38263717},{"id":"https://openalex.org/C530470458","wikidata":"https://www.wikidata.org/wiki/Q128581","display_name":"Breast cancer","level":3,"score":0.30532482},{"id":"https://openalex.org/C121608353","wikidata":"https://www.wikidata.org/wiki/Q12078","display_name":"Cancer","level":2,"score":0.09754145},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C126322002","wikidata":"https://www.wikidata.org/wiki/Q11180","display_name":"Internal medicine","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icsipa.2013.6708036","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/3","score":0.78,"display_name":"Good health and well-being"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":14,"referenced_works":["https://openalex.org/W1986923534","https://openalex.org/W2012626328","https://openalex.org/W2032215398","https://openalex.org/W2101620072","https://openalex.org/W2109597745","https://openalex.org/W2111084199","https://openalex.org/W2113048934","https://openalex.org/W2133059825","https://openalex.org/W2136856913","https://openalex.org/W2139207838","https://openalex.org/W2140490307","https://openalex.org/W2164710647","https://openalex.org/W2248720620","https://openalex.org/W2534535948"],"related_works":["https://openalex.org/W4312054809","https://openalex.org/W2568913424","https://openalex.org/W2384626809","https://openalex.org/W2144429080","https://openalex.org/W2131724745","https://openalex.org/W2103042932","https://openalex.org/W2028052878","https://openalex.org/W2022136933","https://openalex.org/W2003440330","https://openalex.org/W1577134365"],"abstract_inverted_index":{"An":[0],"early":[1],"detection":[2,24,42],"of":[3,13,45,72,94,145],"abnormalities":[4],"is":[5,25,52,65,82,103,120],"the":[6,11,19,49,57,73,92,137],"key":[7],"point":[8],"to":[9,39,67,110],"improve":[10],"prognostic":[12],"breast":[14,46,50],"Cancer.":[15],"Masses":[16],"are":[17],"among":[18],"most":[20],"frequent":[21],"abnormalities.":[22],"Their":[23],"however":[26],"a":[27,77,85],"very":[28],"tedious":[29],"and":[30,43,54,89,98,107,114],"time-consuming":[31],"task.":[32],"This":[33],"paper":[34],"presents":[35],"an":[36,62,69],"automatic":[37],"scheme":[38,139],"perform":[40,68],"both":[41],"segmentation":[44],"masses.":[47],"Firstly,":[48],"region":[51],"determined":[53],"extracted":[55],"from":[56,125],"whole":[58],"mammogram":[59],"image.":[60,152],"Secondly,":[61],"adaptive":[63],"algorithm":[64],"proposed":[66,118,138],"accurate":[70],"identification":[71],"mass":[74],"region.":[75],"Finally,":[76],"false":[78],"positive":[79],"reduction":[80],"method":[81,88,119],"applied":[83],"through":[84],"feature":[86],"extraction":[87],"classification":[90,101],"using":[91,105],"advantages":[93],"multiresolution":[95],"representations":[96],"(curvelet":[97],"wavelet).":[99],"The":[100,117,132],"step":[102],"achieved":[104],"SVM":[106],"KNN":[108],"classifiers":[109],"distinguish":[111],"between":[112],"normal":[113],"abnormal":[115],"tissues.":[116],"tested":[121],"on":[122],"118":[123],"images":[124,127],"mammographic":[126],"analysis":[128],"society":[129],"(MIAS)":[130],"datasets.":[131],"experimental":[133],"results":[134],"demonstrate":[135],"that":[136],"achieves":[140],"100%":[141],"sensitivity":[142],"with":[143],"average":[144],"1.87":[146],"False":[147],"Positive":[148],"(FP)":[149],"detections":[150],"per":[151]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2136440763","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":3},{"year":2018,"cited_by_count":2},{"year":2017,"cited_by_count":1},{"year":2016,"cited_by_count":1},{"year":2015,"cited_by_count":1},{"year":2014,"cited_by_count":1}],"updated_date":"2025-03-16T18:56:56.538276","created_date":"2016-06-24"}