{"id":"https://openalex.org/W3098598077","doi":"https://doi.org/10.1109/icse.2017.9","title":"Semantically Enhanced Software Traceability Using Deep Learning Techniques","display_name":"Semantically Enhanced Software Traceability Using Deep Learning Techniques","publication_year":2017,"publication_date":"2017-05-01","ids":{"openalex":"https://openalex.org/W3098598077","doi":"https://doi.org/10.1109/icse.2017.9","mag":"3098598077"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icse.2017.9","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"proceedings-article","indexed_in":["arxiv","crossref","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/1804.02438","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5010572058","display_name":"Jin Guo","orcid":"https://orcid.org/0000-0003-1782-1545"},"institutions":[{"id":"https://openalex.org/I107639228","display_name":"University of Notre Dame","ror":"https://ror.org/00mkhxb43","country_code":"US","type":"education","lineage":["https://openalex.org/I107639228"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jin Guo","raw_affiliation_strings":["University of Notre Dame, IN, USA"],"affiliations":[{"raw_affiliation_string":"University of Notre Dame, IN, USA","institution_ids":["https://openalex.org/I107639228"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101411842","display_name":"Jinghui Cheng","orcid":"https://orcid.org/0000-0002-8474-5290"},"institutions":[{"id":"https://openalex.org/I107639228","display_name":"University of Notre Dame","ror":"https://ror.org/00mkhxb43","country_code":"US","type":"education","lineage":["https://openalex.org/I107639228"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jinghui Cheng","raw_affiliation_strings":["University of Notre Dame, IN, USA"],"affiliations":[{"raw_affiliation_string":"University of Notre Dame, IN, USA","institution_ids":["https://openalex.org/I107639228"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5037363688","display_name":"Jane Cleland\u2010Huang","orcid":"https://orcid.org/0000-0001-9436-5606"},"institutions":[{"id":"https://openalex.org/I107639228","display_name":"University of Notre Dame","ror":"https://ror.org/00mkhxb43","country_code":"US","type":"education","lineage":["https://openalex.org/I107639228"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jane Cleland-Huang","raw_affiliation_strings":["University of Notre Dame, IN, USA"],"affiliations":[{"raw_affiliation_string":"University of Notre Dame, IN, USA","institution_ids":["https://openalex.org/I107639228"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":239,"citation_normalized_percentile":{"value":0.97267,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":null,"issue":null,"first_page":"3","last_page":"14"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10260","display_name":"Software Engineering Research","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10260","display_name":"Software Engineering Research","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10430","display_name":"Software Engineering Techniques and Practices","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12127","display_name":"Software System Performance and Reliability","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/tracing","display_name":"Tracing","score":0.69203705},{"id":"https://openalex.org/keywords/trace","display_name":"TRACE (psycholinguistics)","score":0.5322098},{"id":"https://openalex.org/keywords/word-embedding","display_name":"Word embedding","score":0.50678474}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.87518716},{"id":"https://openalex.org/C138673069","wikidata":"https://www.wikidata.org/wiki/Q322229","display_name":"Tracing","level":2,"score":0.69203705},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.60586596},{"id":"https://openalex.org/C75291252","wikidata":"https://www.wikidata.org/wiki/Q1315756","display_name":"TRACE (psycholinguistics)","level":2,"score":0.5322098},{"id":"https://openalex.org/C2777462759","wikidata":"https://www.wikidata.org/wiki/Q18395344","display_name":"Word embedding","level":3,"score":0.50678474},{"id":"https://openalex.org/C147168706","wikidata":"https://www.wikidata.org/wiki/Q1457734","display_name":"Recurrent neural network","level":3,"score":0.49282554},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.47198182},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.44983703},{"id":"https://openalex.org/C207685749","wikidata":"https://www.wikidata.org/wiki/Q2088941","display_name":"Domain knowledge","level":2,"score":0.44137576},{"id":"https://openalex.org/C184337299","wikidata":"https://www.wikidata.org/wiki/Q1437428","display_name":"Semantics (computer science)","level":2,"score":0.4320999},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3294726},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.29146844},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.26925543},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.2536956},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icse.2017.9","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1804.02438","pdf_url":"https://arxiv.org/pdf/1804.02438","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.1804.02438","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1804.02438","pdf_url":"https://arxiv.org/pdf/1804.02438","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.71,"id":"https://metadata.un.org/sdg/4","display_name":"Quality education"}],"grants":[],"datasets":[],"versions":["https://openalex.org/W2618735982","https://openalex.org/W3098598077"],"referenced_works_count":76,"referenced_works":["https://openalex.org/W1423339008","https://openalex.org/W1498436455","https://openalex.org/W1614298861","https://openalex.org/W1615991656","https://openalex.org/W179875071","https://openalex.org/W1806891645","https://openalex.org/W1889624880","https://openalex.org/W1917032810","https://openalex.org/W1924770834","https://openalex.org/W1951216520","https://openalex.org/W1965177473","https://openalex.org/W1965482737","https://openalex.org/W1967577593","https://openalex.org/W1970264769","https://openalex.org/W1988137288","https://openalex.org/W1991334006","https://openalex.org/W2002011878","https://openalex.org/W2004902747","https://openalex.org/W2005569040","https://openalex.org/W2009977560","https://openalex.org/W2013093146","https://openalex.org/W2019912855","https://openalex.org/W2022901197","https://openalex.org/W2033020528","https://openalex.org/W2036184018","https://openalex.org/W2036317923","https://openalex.org/W2049462180","https://openalex.org/W2063113600","https://openalex.org/W2064675550","https://openalex.org/W2076236512","https://openalex.org/W2085421499","https://openalex.org/W2085435546","https://openalex.org/W2086367599","https://openalex.org/W2086927394","https://openalex.org/W2107878631","https://openalex.org/W2118202700","https://openalex.org/W2118463056","https://openalex.org/W2124776405","https://openalex.org/W2125603046","https://openalex.org/W2127159302","https://openalex.org/W2127845802","https://openalex.org/W2128581098","https://openalex.org/W2129559874","https://openalex.org/W2130237711","https://openalex.org/W2131774270","https://openalex.org/W2133564696","https://openalex.org/W2138378644","https://openalex.org/W2138857742","https://openalex.org/W2140264852","https://openalex.org/W2143861926","https://openalex.org/W2144161366","https://openalex.org/W2147800946","https://openalex.org/W2149072143","https://openalex.org/W2155928322","https://openalex.org/W2172140247","https://openalex.org/W2172190661","https://openalex.org/W2249980257","https://openalex.org/W2250539671","https://openalex.org/W2346441090","https://openalex.org/W2360967250","https://openalex.org/W2395560004","https://openalex.org/W2406960179","https://openalex.org/W2606321545","https://openalex.org/W2950133940","https://openalex.org/W2950577311","https://openalex.org/W2951650375","https://openalex.org/W2962958286","https://openalex.org/W2963355447","https://openalex.org/W2964199361","https://openalex.org/W2964335273","https://openalex.org/W3005855585","https://openalex.org/W3139593476","https://openalex.org/W3145057472","https://openalex.org/W4236772736","https://openalex.org/W4245672552","https://openalex.org/W4294170691"],"related_works":["https://openalex.org/W4299652732","https://openalex.org/W4248091533","https://openalex.org/W2963744171","https://openalex.org/W2944541365","https://openalex.org/W2789571330","https://openalex.org/W2362901774","https://openalex.org/W2133304975","https://openalex.org/W2115308562","https://openalex.org/W1515178292","https://openalex.org/W1504419871"],"abstract_inverted_index":{"In":[0,81],"most":[1],"safety-critical":[2],"domains":[3],"the":[4,60,69,101,133,144,156,164,171,178,182,192],"need":[5],"for":[6,181],"traceability":[7],"is":[8,33],"prescribed":[9],"by":[10],"certifying":[11],"bodies.":[12],"Trace":[13],"links":[14,31,162],"are":[15],"generally":[16],"created":[17],"among":[18],"requirements,":[19],"design,":[20],"source":[21],"code,":[22],"test":[23],"cases":[24],"and":[25,36,44,72,78,97,114,136,169,196],"other":[26],"artifacts,":[27],"however,":[28,52],"creating":[29],"such":[30],"manually":[32],"time":[34],"consuming":[35],"error":[37],"prone.":[38],"Automated":[39],"solutions":[40],"use":[41],"information":[42],"retrieval":[43],"machine":[45],"learning":[46,91],"techniques":[47,54],"to":[48,56,64,75,92,120,142],"generate":[49,121],"trace":[50,122,161],"links,":[51],"current":[53],"fail":[55],"understand":[57],"semantics":[58,96,146],"of":[59,132,147,155],"software":[61],"artifacts":[62],"or":[63],"integrate":[65],"domain":[66,98,134,168],"knowledge":[67,99,131],"into":[68,100],"tracing":[70,102,107,157,183,189],"process":[71],"therefore":[73],"tend":[74],"deliver":[76],"imprecise":[77],"inaccurate":[79],"results.":[80],"this":[82],"paper,":[83],"we":[84],"present":[85],"a":[86,106],"solution":[87],"that":[88,110,129],"uses":[89,138],"deep":[90],"incorporate":[93],"requirements":[94,148],"artifact":[95],"solution.":[103],"We":[104,150],"propose":[105],"network":[108,158],"architecture":[109],"utilizes":[111],"Word":[112,124],"Embedding":[113],"Recurrent":[115,174],"Neural":[116],"Network":[117],"(RNN)":[118],"models":[119],"links.":[123],"embedding":[125],"learns":[126],"word":[127,140],"vectors":[128,141],"represent":[130],"corpus":[135],"RNN":[137],"these":[139],"learn":[143],"sentence":[145],"artifacts.":[149],"trained":[151],"360":[152],"different":[153],"configurations":[154],"using":[159],"existing":[160],"in":[163],"Positive":[165],"Train":[166],"Control":[167],"identified":[170],"Bidirectional":[172],"Gated":[173],"Unit":[175],"(BI-GRU)":[176],"as":[177],"best":[179],"model":[180],"task.":[184],"BI-GRU":[185],"significantly":[186],"out-performed":[187],"state-of-the-art":[188],"methods":[190],"including":[191],"Vector":[193],"Space":[194],"Model":[195],"Latent":[197],"Semantic":[198],"Indexing.":[199]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3098598077","counts_by_year":[{"year":2024,"cited_by_count":16},{"year":2023,"cited_by_count":27},{"year":2022,"cited_by_count":34},{"year":2021,"cited_by_count":57},{"year":2020,"cited_by_count":39},{"year":2019,"cited_by_count":46},{"year":2018,"cited_by_count":15},{"year":2017,"cited_by_count":5}],"updated_date":"2025-01-18T15:58:36.624041","created_date":"2020-11-23"}