{"id":"https://openalex.org/W2796522779","doi":"https://doi.org/10.1109/icsc.2018.00047","title":"Adjective Intensity Ordering by Representing Word Definitions as a System of Linear Equations","display_name":"Adjective Intensity Ordering by Representing Word Definitions as a System of Linear Equations","publication_year":2018,"publication_date":"2018-01-01","ids":{"openalex":"https://openalex.org/W2796522779","doi":"https://doi.org/10.1109/icsc.2018.00047","mag":"2796522779"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icsc.2018.00047","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5055112064","display_name":"Stefan E. Eng","orcid":"https://orcid.org/0000-0002-5245-6507"},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Stefan Eng","raw_affiliation_strings":["CRESST, UCLA Los, Angeles, USA"],"affiliations":[{"raw_affiliation_string":"CRESST, UCLA Los, Angeles, USA","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5088769869","display_name":"Jennifer Tan","orcid":null},"institutions":[{"id":"https://openalex.org/I2799798094","display_name":"UCLA Health","ror":"https://ror.org/01d88se56","country_code":"US","type":"healthcare","lineage":["https://openalex.org/I2799798094"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jennifer Tan","raw_affiliation_strings":["UCLA Los, Angeles, USA"],"affiliations":[{"raw_affiliation_string":"UCLA Los, Angeles, USA","institution_ids":["https://openalex.org/I2799798094"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5111921396","display_name":"Markus Iseli","orcid":null},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Markus Iseli","raw_affiliation_strings":["CRESST, UCLA Los, Angeles, USA"],"affiliations":[{"raw_affiliation_string":"CRESST, UCLA Los, Angeles, USA","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.061,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":1,"citation_normalized_percentile":{"value":0.215189,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":62,"max":70},"biblio":{"volume":null,"issue":null,"first_page":"265","last_page":"268"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9974,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/adjective","display_name":"Adjective","score":0.9394891},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.59940726}],"concepts":[{"id":"https://openalex.org/C2777683214","wikidata":"https://www.wikidata.org/wiki/Q34698","display_name":"Adjective","level":3,"score":0.9394891},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.6584443},{"id":"https://openalex.org/C2780009758","wikidata":"https://www.wikidata.org/wiki/Q6804172","display_name":"Measure (data warehouse)","level":2,"score":0.61051697},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.59940726},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.57590365},{"id":"https://openalex.org/C2778999518","wikidata":"https://www.wikidata.org/wiki/Q8","display_name":"Happiness","level":2,"score":0.5685669},{"id":"https://openalex.org/C90805587","wikidata":"https://www.wikidata.org/wiki/Q10944557","display_name":"Word (group theory)","level":2,"score":0.5680129},{"id":"https://openalex.org/C2778755073","wikidata":"https://www.wikidata.org/wiki/Q10858537","display_name":"Scale (ratio)","level":2,"score":0.5103635},{"id":"https://openalex.org/C176217482","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Metric (unit)","level":2,"score":0.49661},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.49221864},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.45642066},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.33843023},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.17356846},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.13641807},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.09036267},{"id":"https://openalex.org/C121934690","wikidata":"https://www.wikidata.org/wiki/Q1084","display_name":"Noun","level":2,"score":0.08775732},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.07215589},{"id":"https://openalex.org/C77805123","wikidata":"https://www.wikidata.org/wiki/Q161272","display_name":"Social psychology","level":1,"score":0.06837818},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icsc.2018.00047","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":10,"referenced_works":["https://openalex.org/W2001800587","https://openalex.org/W2037412278","https://openalex.org/W2037987398","https://openalex.org/W2044439790","https://openalex.org/W2061504941","https://openalex.org/W2081580037","https://openalex.org/W2137973529","https://openalex.org/W2250539671","https://openalex.org/W2408329761","https://openalex.org/W4399547459"],"related_works":["https://openalex.org/W4386390828","https://openalex.org/W3027220834","https://openalex.org/W2925146703","https://openalex.org/W2384920399","https://openalex.org/W2377373329","https://openalex.org/W2349081792","https://openalex.org/W2347830809","https://openalex.org/W2044769131","https://openalex.org/W2032086542","https://openalex.org/W162406202"],"abstract_inverted_index":{"While":[0],"speakers":[1,31],"may":[2],"disagree":[3],"or":[4,41,55],"have":[5],"difficulty":[6],"deciding":[7],"the":[8,112,123],"ordering":[9,76],"of":[10,32,69,73,86,89,101,114,141],"semantically":[11,64],"similar":[12,115],"adjectives":[13,20,46,59],"such":[14,52],"as":[15,53],"icy":[16],"and":[17,83,129,137,148,167],"frosty,":[18],"arranging":[19],"on":[21,133],"a":[22,49,94,99,126,139,154],"linear":[23,102],"scale":[24,79,136],"is":[25,37,65],"an":[26,66,134],"intuitive":[27],"task":[28],"for":[29,143,146,150,161,164,169],"most":[30],"any":[33],"language.":[34],"Currently,":[35],"there":[36],"no":[38],"standard":[39,128],"method":[40],"database":[42],"to":[43,61,110,121],"order":[44],"gradable":[45],"that":[47,97],"share":[48],"common":[50],"attribute,":[51],"temperature":[54],"speed.":[56],"Modeling":[57],"how":[58],"relate":[60],"one":[62],"another":[63],"important":[67],"aspect":[68],"language":[70],"understanding.":[71],"Applications":[72],"adjective":[74],"intensity":[75,113],"include":[77],"detecting":[78],"differences":[80],"in":[81],"reviews":[82],"measuring":[84],"similarity":[85],"larger":[87],"segments":[88],"text.":[90],"This":[91],"paper":[92],"discusses":[93],"novel":[95],"approach":[96],"solves":[98],"system":[100],"equations":[103],"constructed":[104],"only":[105],"from":[106],"word":[107],"dictionary":[108],"definitions":[109],"compare":[111],"adjectives.":[116,152,171],"We":[117],"used":[118],"Krippendorff's":[119],"alpha":[120],"measure":[122],"agreement":[124,158],"between":[125],"human":[127],"our":[130],"algorithms'":[131],"results":[132],"ordinal":[135],"attained":[138],"score":[140],"0.927":[142,160],"temperature-,":[144],"0.652":[145],"speed-,":[147],"0.673":[149],"happiness-related":[151,170],"As":[153],"reference,":[155],"Krippendorff":[156],"inter-rater":[157],"was":[159],"temperature,":[162],"0.816":[163],"speed-related":[165],"adjectives,":[166],"0.849":[168]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2796522779","counts_by_year":[{"year":2018,"cited_by_count":1}],"updated_date":"2024-12-10T02:42:20.011563","created_date":"2018-04-24"}