{"id":"https://openalex.org/W3010164594","doi":"https://doi.org/10.1109/icsai48974.2019.9010202","title":"Pedestrian Detection and Tracking Based on 2D Lidar","display_name":"Pedestrian Detection and Tracking Based on 2D Lidar","publication_year":2019,"publication_date":"2019-11-01","ids":{"openalex":"https://openalex.org/W3010164594","doi":"https://doi.org/10.1109/icsai48974.2019.9010202","mag":"3010164594"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icsai48974.2019.9010202","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100758853","display_name":"Jiannan Chen","orcid":"https://orcid.org/0000-0003-4449-9125"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"education","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jiannan Chen","raw_affiliation_strings":["Department of Automation, Beijing University of Posts and Telecommunications, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Department of Automation, Beijing University of Posts and Telecommunications, Beijing, China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100714384","display_name":"Ping Ye","orcid":"https://orcid.org/0000-0002-6624-0627"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"education","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ping Ye","raw_affiliation_strings":["Department of Automation, Beijing University of Posts and Telecommunications, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Department of Automation, Beijing University of Posts and Telecommunications, Beijing, China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5056613394","display_name":"Zhipeng Sun","orcid":"https://orcid.org/0000-0003-2495-2981"},"institutions":[{"id":"https://openalex.org/I179060312","display_name":"Northeast Electric Power University","ror":"https://ror.org/00zqaxa34","country_code":"CN","type":"education","lineage":["https://openalex.org/I179060312"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhipeng Sun","raw_affiliation_strings":["Department of Electrical Engineering, Northeast Electric Power University, Jilin, China"],"affiliations":[{"raw_affiliation_string":"Department of Electrical Engineering, Northeast Electric Power University, Jilin, China","institution_ids":["https://openalex.org/I179060312"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.733,"has_fulltext":false,"cited_by_count":15,"citation_normalized_percentile":{"value":0.92515,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":89,"max":90},"biblio":{"volume":null,"issue":null,"first_page":"421","last_page":"426"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12153","display_name":"Advanced Optical Sensing Technologies","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/3105","display_name":"Instrumentation"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12153","display_name":"Advanced Optical Sensing Technologies","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/3105","display_name":"Instrumentation"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11164","display_name":"Remote Sensing and LiDAR Applications","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9938,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/pedestrian-detection","display_name":"Pedestrian detection","score":0.63594806},{"id":"https://openalex.org/keywords/tracking","display_name":"Tracking (education)","score":0.52061987}],"concepts":[{"id":"https://openalex.org/C51399673","wikidata":"https://www.wikidata.org/wiki/Q504027","display_name":"Lidar","level":2,"score":0.83779585},{"id":"https://openalex.org/C2780156472","wikidata":"https://www.wikidata.org/wiki/Q2355550","display_name":"Pedestrian detection","level":3,"score":0.63594806},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5996914},{"id":"https://openalex.org/C2777113093","wikidata":"https://www.wikidata.org/wiki/Q221488","display_name":"Pedestrian","level":2,"score":0.5402417},{"id":"https://openalex.org/C2775936607","wikidata":"https://www.wikidata.org/wiki/Q466845","display_name":"Tracking (education)","level":2,"score":0.52061987},{"id":"https://openalex.org/C62649853","wikidata":"https://www.wikidata.org/wiki/Q199687","display_name":"Remote sensing","level":1,"score":0.4408247},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3952028},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.36096406},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.21026576},{"id":"https://openalex.org/C166957645","wikidata":"https://www.wikidata.org/wiki/Q23498","display_name":"Archaeology","level":1,"score":0.06408894},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.0},{"id":"https://openalex.org/C19417346","wikidata":"https://www.wikidata.org/wiki/Q7922","display_name":"Pedagogy","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icsai48974.2019.9010202","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.7,"id":"https://metadata.un.org/sdg/11","display_name":"Sustainable cities and communities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":16,"referenced_works":["https://openalex.org/W1998068974","https://openalex.org/W2012496675","https://openalex.org/W2509387365","https://openalex.org/W2536618264","https://openalex.org/W2563715243","https://openalex.org/W2578456528","https://openalex.org/W2593332721","https://openalex.org/W2609747629","https://openalex.org/W2752895257","https://openalex.org/W2777186991","https://openalex.org/W2779682374","https://openalex.org/W2781337562","https://openalex.org/W2796347433","https://openalex.org/W2808147914","https://openalex.org/W2809449138","https://openalex.org/W4293584584"],"related_works":["https://openalex.org/W4319317934","https://openalex.org/W3011451421","https://openalex.org/W2981141433","https://openalex.org/W2972620127","https://openalex.org/W2956374172","https://openalex.org/W2901265155","https://openalex.org/W2351984678","https://openalex.org/W2140032575","https://openalex.org/W2012196540","https://openalex.org/W2011860471"],"abstract_inverted_index":{"In":[0,55,83,116,133,162,201],"order":[1,62,84,139,163],"to":[2,13,63,76,85,110,126,140,164,173,195],"make":[3],"the":[4,14,21,51,56,65,78,87,90,94,101,105,112,117,128,134,142,148,156,166,170,175,185,202,222,234],"service":[5],"robot":[6],"carry":[7],"out":[8],"dynamic":[9],"path":[10],"planning":[11],"according":[12],"movement":[15],"state":[16],"of":[17,23,53,67,89,145,150,158,169,177,180],"pedestrians":[18],"and":[19,33,172,230,233],"improve":[20,141,165],"ability":[22,168],"collaboration":[24],"with":[25,104],"humans,":[26],"this":[27,121,206],"paper":[28,122,207],"proposes":[29,208],"a":[30,197,209],"pedestrian":[31,181,187,203,228],"detection":[32,41,95,143,229],"tracking":[34,204,211,231],"algorithm":[35,98,212],"based":[36,42,213],"on":[37,43,93,155,214],"2D":[38,44],"lidar.":[39],"Pedestrian":[40],"lidar":[45,68],"is":[46,74,108,153,237],"mainly":[47],"done":[48],"by":[49],"detecting":[50],"legs":[52],"pedestrians.":[54],"laser":[57,102,129],"data":[58,103],"preprocessing":[59],"stage,":[60,120,137],"in":[61,138],"reduce":[64,86],"influence":[66,88],"point":[69,80,130],"cloud":[70,81,131],"noise,":[71],"Gaussian":[72],"filtering":[73],"used":[75],"filter":[77],"original":[79],"data.":[82,115],"environment":[91],"itself":[92],"accuracy,":[96],"an":[97],"for":[99],"projecting":[100],"static":[106,113],"map":[107],"proposed":[109,223],"remove":[111],"background":[114],"clustering":[118,125],"segmentation":[119],"uses":[123,193],"Euclidean":[124],"segment":[127],"clustering.":[132],"feature":[135,183],"extraction":[136],"accuracy":[144],"pedestrians'":[146],"legs,":[147],"number":[149],"statistical":[151],"features":[152,188],"increased":[154],"basis":[157],"extracting":[159],"geometric":[160],"features;":[161],"generalization":[167],"model,":[171],"solve":[174],"problem":[176],"scale":[178],"inconsistency":[179],"leg":[182,199],"description,":[184],"extracted":[186],"are":[189],"normalized.":[190],"This":[191],"article":[192],"SVM":[194],"build":[196],"human":[198],"classifier.":[200],"phase,":[205],"multi-person":[210],"Kalman":[215],"filtering.":[216],"The":[217],"experimental":[218],"results":[219],"show":[220],"that":[221],"scheme":[224],"can":[225],"obtain":[226],"better":[227],"effects,":[232],"real-time":[235],"performance":[236],"higher.":[238]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3010164594","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":4},{"year":2020,"cited_by_count":2}],"updated_date":"2024-12-13T13:54:11.593585","created_date":"2020-03-13"}