{"id":"https://openalex.org/W2783496839","doi":"https://doi.org/10.1109/icsai.2017.8248284","title":"Evaluation of synthetic data for deep learning stereo depth algorithms on embedded platforms","display_name":"Evaluation of synthetic data for deep learning stereo depth algorithms on embedded platforms","publication_year":2017,"publication_date":"2017-11-01","ids":{"openalex":"https://openalex.org/W2783496839","doi":"https://doi.org/10.1109/icsai.2017.8248284","mag":"2783496839"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icsai.2017.8248284","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100379917","display_name":"Kevin Lee","orcid":"https://orcid.org/0000-0002-2730-9150"},"institutions":[{"id":"https://openalex.org/I1304085615","display_name":"Nvidia (United Kingdom)","ror":"https://ror.org/02kr42612","country_code":"GB","type":"company","lineage":["https://openalex.org/I1304085615","https://openalex.org/I4210127875"]},{"id":"https://openalex.org/I1343180700","display_name":"Intel (United States)","ror":"https://ror.org/01ek73717","country_code":"US","type":"company","lineage":["https://openalex.org/I1343180700"]}],"countries":["GB","US"],"is_corresponding":false,"raw_author_name":"Kevin Lee","raw_affiliation_strings":["Computer Vision and Machine Learning Group Intel/Movidius"],"affiliations":[{"raw_affiliation_string":"Computer Vision and Machine Learning Group Intel/Movidius","institution_ids":["https://openalex.org/I1304085615","https://openalex.org/I1343180700"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5043631421","display_name":"David Moloney","orcid":"https://orcid.org/0000-0001-7604-370X"},"institutions":[{"id":"https://openalex.org/I1304085615","display_name":"Nvidia (United Kingdom)","ror":"https://ror.org/02kr42612","country_code":"GB","type":"company","lineage":["https://openalex.org/I1304085615","https://openalex.org/I4210127875"]},{"id":"https://openalex.org/I1343180700","display_name":"Intel (United States)","ror":"https://ror.org/01ek73717","country_code":"US","type":"company","lineage":["https://openalex.org/I1343180700"]}],"countries":["GB","US"],"is_corresponding":false,"raw_author_name":"David Moloney","raw_affiliation_strings":["Computer Vision and Machine Learning Group Intel/Movidius"],"affiliations":[{"raw_affiliation_string":"Computer Vision and Machine Learning Group Intel/Movidius","institution_ids":["https://openalex.org/I1304085615","https://openalex.org/I1343180700"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.181,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":6,"citation_normalized_percentile":{"value":0.349166,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":81,"max":82},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10531","display_name":"Advanced Vision and Imaging","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11164","display_name":"Remote Sensing and LiDAR Applications","score":0.9928,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10638","display_name":"Optical measurement and interference techniques","score":0.9926,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6856868},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.59145385},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.4960588},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.4317922},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.3433355}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icsai.2017.8248284","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/7","score":0.44,"display_name":"Affordable and clean energy"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":20,"referenced_works":["https://openalex.org/W1487859867","https://openalex.org/W15755586","https://openalex.org/W1988313671","https://openalex.org/W2071879227","https://openalex.org/W2099712288","https://openalex.org/W2104974755","https://openalex.org/W2115022634","https://openalex.org/W2133665775","https://openalex.org/W2144041313","https://openalex.org/W2150066425","https://openalex.org/W2155893237","https://openalex.org/W2165114467","https://openalex.org/W2214868166","https://openalex.org/W2279098554","https://openalex.org/W2283234189","https://openalex.org/W2397830550","https://openalex.org/W2554197840","https://openalex.org/W2580705004","https://openalex.org/W2912424718","https://openalex.org/W753012316"],"related_works":["https://openalex.org/W3215138031","https://openalex.org/W3009238340","https://openalex.org/W2775347418","https://openalex.org/W2772917594","https://openalex.org/W2755342338","https://openalex.org/W2731899572","https://openalex.org/W2166024367","https://openalex.org/W2058170566","https://openalex.org/W2036807459","https://openalex.org/W1969923398"],"abstract_inverted_index":{"Stereo":[0],"vision":[1,12],"is":[2,45,58],"a":[3,59,74,151,166,171,204,210],"very":[4,25],"active":[5],"field":[6],"in":[7,14],"the":[8,28,31,39,42,49,66,103,133,138,143,158,206],"realm":[9],"of":[10,33,41,53,68,102,105,153,173],"computer":[11],"and":[13,61,83,95,145,175,184,196,198],"recent":[15],"years":[16],"Convolutional":[17],"Neural":[18],"Networks":[19],"(CNNs)":[20],"have":[21],"proven":[22],"to":[23,202],"be":[24,91],"competitive":[26],"against":[27,124],"state-of-the-art.":[29],"However":[30],"performance":[32,140,168,197],"these":[34],"networks":[35,125,148],"are":[36],"limited":[37],"by":[38,108,164],"quality":[40,55,104],"data":[43,120,161],"that":[44,89,112],"used":[46,92],"when":[47],"training":[48,94],"CNNs.":[50],"Data":[51],"acquisition":[52],"high":[54],"labelled":[56],"images":[57],"time-consuming":[60],"expensive":[62],"process.":[63],"By":[64],"exploiting":[65],"power":[67,194],"modern-day":[69],"powerful":[70],"GPUs,":[71],"we":[72,136,199],"present":[73],"synthetic":[75,119,160],"dataset":[76,107],"with":[77],"fully":[78],"rectified":[79],"stereo":[80,97,178],"image":[81],"pairs":[82],"accompanying":[84],"accurate":[85],"ground":[86],"truth":[87],"information":[88],"can":[90,121,162],"for":[93],"testing":[96],"algorithms.":[98],"We":[99,155,190],"provide":[100],"validation":[101],"our":[106],"performing":[109,212],"quantitative":[110],"experiments":[111],"suggest":[113],"pre-training":[114],"deep":[115,176],"learning":[116,177],"algorithms":[117,179],"on":[118,127,132,170,181,193,214],"perform":[122],"competitively":[123],"trained":[126,147],"real":[128,144],"life":[129],"data.":[130],"Testing":[131],"KITTI":[134],"data-set[1],":[135],"found":[137],"accuracy":[139],"difference":[141],"between":[142],"synthetically":[146],"was":[149],"within":[150],"margin":[152],"1.8%.":[154],"also":[156,191],"illustrate":[157],"functionality":[159],"provide,":[163],"conducting":[165],"key":[167],"index":[169],"selection":[172],"conventional":[174],"available":[180],"embedded":[182,216],"platforms":[183],"compared":[185],"them":[186],"under":[187],"common":[188],"metrics.":[189],"focused":[192],"consumption":[195],"were":[200],"able":[201],"achieve":[203],"compute":[205],"matching":[207],"cost":[208],"from":[209],"CNN":[211],"inference":[213],"an":[215],"device":[217],"at":[218,221],"11.9":[219],"FPS":[220],"1.2":[222],"Watts.":[223]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2783496839","counts_by_year":[{"year":2023,"cited_by_count":3},{"year":2020,"cited_by_count":3}],"updated_date":"2024-12-10T22:45:59.607345","created_date":"2018-01-26"}