{"id":"https://openalex.org/W2553417306","doi":"https://doi.org/10.1109/icrc.2016.7738674","title":"Approximate computing: Challenges and opportunities","display_name":"Approximate computing: Challenges and opportunities","publication_year":2016,"publication_date":"2016-10-01","ids":{"openalex":"https://openalex.org/W2553417306","doi":"https://doi.org/10.1109/icrc.2016.7738674","mag":"2553417306"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icrc.2016.7738674","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103063911","display_name":"Ankur Agrawal","orcid":"https://orcid.org/0000-0002-4389-5911"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ankur Agrawal","raw_affiliation_strings":["IBM T.J. Watson Research Center, NY"],"affiliations":[{"raw_affiliation_string":"IBM T.J. Watson Research Center, NY","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5072951628","display_name":"Zehra Sura","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Zehra Sura","raw_affiliation_strings":["IBM T.J. Watson Research Center, NY"],"affiliations":[{"raw_affiliation_string":"IBM T.J. Watson Research Center, NY","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5089720016","display_name":"Jungwook Choi","orcid":"https://orcid.org/0000-0001-5916-9714"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jungwook Choi","raw_affiliation_strings":["IBM T.J. Watson Research Center, NY"],"affiliations":[{"raw_affiliation_string":"IBM T.J. Watson Research Center, NY","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5008011496","display_name":"Kailash Gopalakrishnan","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kailash Gopalakrishnan","raw_affiliation_strings":["IBM T.J. Watson Research Center, NY"],"affiliations":[{"raw_affiliation_string":"IBM T.J. Watson Research Center, NY","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5041069145","display_name":"Suyog Gupta","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Suyog Gupta","raw_affiliation_strings":["IBM T.J. Watson Research Center, NY"],"affiliations":[{"raw_affiliation_string":"IBM T.J. Watson Research Center, NY","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5109898812","display_name":"Ravi Nair","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Ravi Nair","raw_affiliation_strings":["IBM T.J. Watson Research Center, NY"],"affiliations":[{"raw_affiliation_string":"IBM T.J. Watson Research Center, NY","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5089478486","display_name":"Jinwook Oh","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jinwook Oh","raw_affiliation_strings":["IBM T.J. Watson Research Center, NY"],"affiliations":[{"raw_affiliation_string":"IBM T.J. Watson Research Center, NY","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5066703340","display_name":"Daniel A. Prener","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Daniel A. Prener","raw_affiliation_strings":["IBM T.J. Watson Research Center, NY"],"affiliations":[{"raw_affiliation_string":"IBM T.J. Watson Research Center, NY","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5012408072","display_name":"Sunil Shukla","orcid":"https://orcid.org/0000-0002-9268-4096"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sunil Shukla","raw_affiliation_strings":["IBM T.J. Watson Research Center, NY"],"affiliations":[{"raw_affiliation_string":"IBM T.J. Watson Research Center, NY","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101784876","display_name":"Vijayalakshmi Srinivasan","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Vijayalakshmi Srinivasan","raw_affiliation_strings":["IBM T.J. Watson Research Center, NY"],"affiliations":[{"raw_affiliation_string":"IBM T.J. Watson Research Center, NY","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":9.613,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":84,"citation_normalized_percentile":{"value":0.948047,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"8"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10054","display_name":"Parallel Computing and Optimization Techniques","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1708","display_name":"Hardware and Architecture"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10054","display_name":"Parallel Computing and Optimization Techniques","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1708","display_name":"Hardware and Architecture"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10502","display_name":"Advanced Memory and Neural Computing","score":0.998,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12808","display_name":"Ferroelectric and Negative Capacitance Devices","score":0.9971,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7752609},{"id":"https://openalex.org/C165696696","wikidata":"https://www.wikidata.org/wiki/Q11287","display_name":"Exploit","level":2,"score":0.6346598},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.49241126},{"id":"https://openalex.org/C120314980","wikidata":"https://www.wikidata.org/wiki/Q180634","display_name":"Distributed computing","level":1,"score":0.48250937},{"id":"https://openalex.org/C2778562939","wikidata":"https://www.wikidata.org/wiki/Q1298791","display_name":"Synchronization (alternating current)","level":3,"score":0.45691615},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.42134023},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.39226976},{"id":"https://openalex.org/C113775141","wikidata":"https://www.wikidata.org/wiki/Q428691","display_name":"Computer engineering","level":1,"score":0.3662665},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.32775235},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.16310394},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.0},{"id":"https://openalex.org/C127162648","wikidata":"https://www.wikidata.org/wiki/Q16858953","display_name":"Channel (broadcasting)","level":2,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icrc.2016.7738674","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Affordable and clean energy","id":"https://metadata.un.org/sdg/7","score":0.85}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":29,"referenced_works":["https://openalex.org/W1492552760","https://openalex.org/W1498436455","https://openalex.org/W1791348790","https://openalex.org/W1841592590","https://openalex.org/W1973021400","https://openalex.org/W1994616650","https://openalex.org/W2019048425","https://openalex.org/W2019145120","https://openalex.org/W2021851106","https://openalex.org/W2069479606","https://openalex.org/W2084363500","https://openalex.org/W2111444234","https://openalex.org/W2113751407","https://openalex.org/W2118877769","https://openalex.org/W2121236443","https://openalex.org/W2124386111","https://openalex.org/W2142883190","https://openalex.org/W2143283746","https://openalex.org/W2153054365","https://openalex.org/W2154871416","https://openalex.org/W2159211021","https://openalex.org/W2166250385","https://openalex.org/W2769656678","https://openalex.org/W2771937810","https://openalex.org/W2919115771","https://openalex.org/W2962950660","https://openalex.org/W2963374099","https://openalex.org/W4244083566","https://openalex.org/W4244731564"],"related_works":["https://openalex.org/W4312814274","https://openalex.org/W4285370786","https://openalex.org/W3207760230","https://openalex.org/W2536018345","https://openalex.org/W2358353312","https://openalex.org/W2296488620","https://openalex.org/W2059217922","https://openalex.org/W17155033","https://openalex.org/W1590307681","https://openalex.org/W1496222301"],"abstract_inverted_index":{"Approximate":[0],"computing":[1,7,188],"is":[2,189,214],"gaining":[3],"traction":[4],"as":[5],"a":[6,80,190,243],"paradigm":[8,193],"for":[9,147,196,264],"data":[10,128],"analytics":[11],"and":[12,43,77,90,150,228,251],"cognitive":[13],"applications":[14,39,83,100,155,184,241],"that":[15,31,95,171,186],"aim":[16],"to":[17,38,49,136,209,216,224,229,256],"extract":[18],"deep":[19],"insight":[20],"from":[21,139,199],"vast":[22],"quantities":[23],"of":[24,57,66,70,82,87,107,120,126,220],"data.":[25],"In":[26,53,122,207],"this":[27],"paper,":[28],"we":[29,62,93,156],"demonstrate":[30,170,185],"multiple":[32,68,201,218],"approximation":[33,58],"techniques":[34,176,202],"can":[35,44,101,133],"be":[36,45,102,134],"applied":[37,178],"in":[40,59,98,112,130,245],"these":[41,60,175,211],"domains":[42,86],"further":[46],"combined":[47],"together":[48],"compound":[50],"their":[51],"benefits.":[52,152],"assessing":[54],"the":[55,64,71,85,99,124,127,131,140,204,221,240,247,253,258],"potential":[56,146,195],"applications,":[61],"took":[63],"liberty":[65],"changing":[67],"layers":[69,219],"system":[72,205,222],"stack:":[73],"architecture,":[74,248],"programming":[75,249],"model,":[76,250],"algorithms.":[78],"Across":[79],"set":[81],"spanning":[84],"DSP,":[88],"robotics,":[89],"machine":[91],"learning,":[92],"show":[94],"hot":[96],"loops":[97],"perforated":[103],"by":[104,160],"an":[105],"average":[106],"50%":[108,161],"with":[109,145,194],"proportional":[110],"reduction":[111],"execution":[113,158],"time,":[114],"while":[115],"still":[116],"producing":[117],"acceptable":[118],"quality":[119],"results.":[121],"addition,":[123],"width":[125],"used":[129,255],"computation":[132],"reduced":[135,157],"10-16":[137],"bits":[138,144],"currently":[141],"common":[142],"32/64":[143],"significant":[148],"performance":[149],"energy":[151],"For":[153],"parallel":[154],"time":[159],"using":[162],"relaxed":[163],"synchronization":[164],"mechanisms.":[165],"Finally,":[166],"our":[167],"results":[168,181],"also":[169],"benefits":[172,198,212],"compounded":[173,197],"when":[174],"are":[177,260],"concurrently.":[179],"Our":[180],"across":[182,203],"different":[183],"approximate":[187,233,265],"widely":[191],"applicable":[192],"applying":[200],"stack.":[206],"order":[208],"exploit":[210],"it":[213],"essential":[215],"re-think":[217],"stack":[223],"embrace":[225],"approximations":[226],"ground-up":[227],"design":[230],"tightly":[231],"integrated":[232],"accelerators.":[234],"Doing":[235],"so":[236],"will":[237],"enable":[238],"moving":[239],"into":[242],"world":[244],"which":[246],"even":[252],"algorithms":[254],"implement":[257],"application":[259],"all":[261],"fundamentally":[262],"designed":[263],"computing.":[266]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2553417306","counts_by_year":[{"year":2024,"cited_by_count":8},{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":14},{"year":2021,"cited_by_count":17},{"year":2020,"cited_by_count":11},{"year":2019,"cited_by_count":15},{"year":2018,"cited_by_count":10},{"year":2017,"cited_by_count":5}],"updated_date":"2024-12-24T11:54:12.721669","created_date":"2016-11-30"}