{"id":"https://openalex.org/W4383109074","doi":"https://doi.org/10.1109/icra48891.2023.10160984","title":"GoRela: Go Relative for Viewpoint-Invariant Motion Forecasting","display_name":"GoRela: Go Relative for Viewpoint-Invariant Motion Forecasting","publication_year":2023,"publication_date":"2023-05-29","ids":{"openalex":"https://openalex.org/W4383109074","doi":"https://doi.org/10.1109/icra48891.2023.10160984"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icra48891.2023.10160984","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2211.02545","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5069086220","display_name":"Alexander Cui","orcid":"https://orcid.org/0000-0001-5997-2611"},"institutions":[{"id":"https://openalex.org/I185261750","display_name":"University of Toronto","ror":"https://ror.org/03dbr7087","country_code":"CA","type":"funder","lineage":["https://openalex.org/I185261750"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Alexander Cui","raw_affiliation_strings":["Waabi, University of Toronto"],"affiliations":[{"raw_affiliation_string":"Waabi, University of Toronto","institution_ids":["https://openalex.org/I185261750"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5023389308","display_name":"Sergio Casas","orcid":"https://orcid.org/0000-0002-0396-4628"},"institutions":[{"id":"https://openalex.org/I185261750","display_name":"University of Toronto","ror":"https://ror.org/03dbr7087","country_code":"CA","type":"funder","lineage":["https://openalex.org/I185261750"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Sergio Casas","raw_affiliation_strings":["Waabi, University of Toronto"],"affiliations":[{"raw_affiliation_string":"Waabi, University of Toronto","institution_ids":["https://openalex.org/I185261750"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5072219555","display_name":"Kelvin K. L. Wong","orcid":"https://orcid.org/0000-0002-8600-1105"},"institutions":[{"id":"https://openalex.org/I185261750","display_name":"University of Toronto","ror":"https://ror.org/03dbr7087","country_code":"CA","type":"funder","lineage":["https://openalex.org/I185261750"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Kelvin Wong","raw_affiliation_strings":["Waabi, University of Toronto"],"affiliations":[{"raw_affiliation_string":"Waabi, University of Toronto","institution_ids":["https://openalex.org/I185261750"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5082646616","display_name":"Simon Su","orcid":"https://orcid.org/0000-0002-2460-3899"},"institutions":[{"id":"https://openalex.org/I185261750","display_name":"University of Toronto","ror":"https://ror.org/03dbr7087","country_code":"CA","type":"funder","lineage":["https://openalex.org/I185261750"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Simon Suo","raw_affiliation_strings":["Waabi, University of Toronto"],"affiliations":[{"raw_affiliation_string":"Waabi, University of Toronto","institution_ids":["https://openalex.org/I185261750"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5058557954","display_name":"Raquel Urtasun","orcid":null},"institutions":[{"id":"https://openalex.org/I185261750","display_name":"University of Toronto","ror":"https://ror.org/03dbr7087","country_code":"CA","type":"funder","lineage":["https://openalex.org/I185261750"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Raquel Urtasun","raw_affiliation_strings":["Waabi, University of Toronto"],"affiliations":[{"raw_affiliation_string":"Waabi, University of Toronto","institution_ids":["https://openalex.org/I185261750"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":6.075,"has_fulltext":false,"cited_by_count":31,"citation_normalized_percentile":{"value":0.999903,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":null,"issue":null,"first_page":"7801","last_page":"7807"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11099","display_name":"Autonomous Vehicle Technology and Safety","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11099","display_name":"Autonomous Vehicle Technology and Safety","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9885,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.976,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/encode","display_name":"ENCODE","score":0.70713913},{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.69302475}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7239387},{"id":"https://openalex.org/C66746571","wikidata":"https://www.wikidata.org/wiki/Q1134833","display_name":"ENCODE","level":3,"score":0.70713913},{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.69302475},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.62736213},{"id":"https://openalex.org/C190470478","wikidata":"https://www.wikidata.org/wiki/Q2370229","display_name":"Invariant (physics)","level":2,"score":0.5599206},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5069185},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.4999864},{"id":"https://openalex.org/C172849965","wikidata":"https://www.wikidata.org/wiki/Q3148875","display_name":"Reference frame","level":3,"score":0.48312017},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.44440746},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.4193704},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.37516442},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.28233087},{"id":"https://openalex.org/C126042441","wikidata":"https://www.wikidata.org/wiki/Q1324888","display_name":"Frame (networking)","level":2,"score":0.28059924},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.17025122},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.13623422},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C37914503","wikidata":"https://www.wikidata.org/wiki/Q156495","display_name":"Mathematical physics","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icra48891.2023.10160984","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2211.02545","pdf_url":"http://arxiv.org/pdf/2211.02545","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2211.02545","pdf_url":"http://arxiv.org/pdf/2211.02545","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/11","display_name":"Sustainable cities and communities","score":0.81}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":38,"referenced_works":["https://openalex.org/W1931877416","https://openalex.org/W2626967530","https://openalex.org/W2894978157","https://openalex.org/W2898900571","https://openalex.org/W2905173465","https://openalex.org/W2963351448","https://openalex.org/W2963759562","https://openalex.org/W2967177252","https://openalex.org/W2968008415","https://openalex.org/W2985871763","https://openalex.org/W2997264916","https://openalex.org/W3028769608","https://openalex.org/W3034722190","https://openalex.org/W3062588417","https://openalex.org/W3090789587","https://openalex.org/W3106944564","https://openalex.org/W3108486966","https://openalex.org/W3110109289","https://openalex.org/W3121034396","https://openalex.org/W3123730522","https://openalex.org/W3125605478","https://openalex.org/W3130935189","https://openalex.org/W3132535424","https://openalex.org/W3172477795","https://openalex.org/W3196864007","https://openalex.org/W3202707544","https://openalex.org/W3204875639","https://openalex.org/W3206458928","https://openalex.org/W3209837334","https://openalex.org/W3214950490","https://openalex.org/W4210389721","https://openalex.org/W4283813727","https://openalex.org/W4285813013","https://openalex.org/W4297733535","https://openalex.org/W4312804128","https://openalex.org/W4324016434","https://openalex.org/W4385221361","https://openalex.org/W4385245566"],"related_works":["https://openalex.org/W2988126442","https://openalex.org/W2488420884","https://openalex.org/W2468279273","https://openalex.org/W2354198838","https://openalex.org/W2338543196","https://openalex.org/W2103419012","https://openalex.org/W2063982682","https://openalex.org/W2057568687","https://openalex.org/W1989130879","https://openalex.org/W1974414866"],"abstract_inverted_index":{"The":[0,43],"task":[1],"of":[2,59,216],"motion":[3],"forecasting":[4],"is":[5,66,110,194],"critical":[6],"for":[7,69,78,136],"self-":[8],"driving":[9],"vehicles":[10],"(SDV":[11],"s)":[12],"to":[13,16,39,48,75,92,115,156,176,179,205],"be":[14,76,177],"able":[15],"plan":[17],"a":[18,100,168,228],"safe":[19],"maneuver.":[20],"Towards":[21,147],"this":[22,64,109,128,148],"goal,":[23,149],"modern":[24],"approaches":[25],"reason":[26],"about":[27],"the":[28,30,50,56,83,86,97,105,120,140,161,164,202,214,220,236],"map,":[29],"agents'":[31],"past":[32],"trajectories":[33],"and":[34,52,96,113,139,163,182,208],"their":[35],"interactions":[36],"in":[37,55,99,127,167],"order":[38],"produce":[40],"accurate":[41],"forecasts.":[42],"predominant":[44],"approach":[45,65,218],"has":[46,90],"been":[47,91],"encode":[49,93],"map":[51,98,141,165,188],"other":[53],"agents":[54,95,138,162],"reference":[57],"frame":[58,103],"each":[60,79],"target":[61],"agent.":[62,80],"However,":[63,108],"computationally":[67],"expensive":[68],"multi-agent":[70],"prediction":[71],"as":[72,225,227],"inference":[73],"needs":[74],"run":[77],"To":[81],"tackle":[82],"scaling":[84],"challenge,":[85],"solution":[87],"thus":[88],"far":[89],"all":[94,137],"shared":[101,134],"coordinate":[102],"(e.g.,":[104,118],"SDV":[106,121],"frame).":[107],"sample":[111],"inefficient":[112],"vulnerable":[114],"domain":[116],"shift":[117],"when":[119],"visits":[122],"uncommon":[123],"states).":[124],"In":[125],"contrast,":[126],"paper,":[129],"we":[130,150],"propose":[131],"an":[132],"efficient":[133],"encoding":[135],"without":[142],"sacrificing":[143],"accuracy":[144],"or":[145],"generalization.":[146],"leverage":[151],"pair-wise":[152],"relative":[153],"positional":[154],"encodings":[155],"represent":[157],"geometric":[158],"relationships":[159],"between":[160],"elements":[166],"heterogeneous":[169],"spatial":[170],"graph.":[171],"This":[172],"parameterization":[173],"allows":[174],"us":[175],"invariant":[178],"scene":[180],"viewpoint,":[181],"save":[183],"online":[184],"computation":[185],"by":[186],"re-using":[187],"embeddings":[189],"computed":[190],"offline.":[191],"Our":[192],"decoder":[193],"also":[195],"viewpoint":[196],"agnostic,":[197],"predicting":[198],"agent":[199],"goals":[200],"on":[201,219],"lane":[203],"graph":[204],"enable":[206],"diverse":[207],"context-aware":[209],"multimodal":[210],"prediction.":[211],"We":[212],"demonstrate":[213],"effectiveness":[215],"our":[217],"urban":[221],"Argoverse":[222],"2":[223],"bench-mark":[224],"well":[226],"novel":[229],"highway":[230],"dataset.":[231],"For":[232],"more":[233],"information,":[234],"visit":[235],"project":[237],"website:":[238],"https://waabi.ailresearch/go-relative-for-viewpoint-invariant-motion-forecasting":[239]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4383109074","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":20},{"year":2023,"cited_by_count":10}],"updated_date":"2025-04-24T14:10:50.745148","created_date":"2023-07-05"}