{"id":"https://openalex.org/W4383108402","doi":"https://doi.org/10.1109/icra48891.2023.10160916","title":"Proficiency Self-Assessment without Breaking the Robot: Anomaly Detection using Assumption-Alignment Tracking from Safe Experiments","display_name":"Proficiency Self-Assessment without Breaking the Robot: Anomaly Detection using Assumption-Alignment Tracking from Safe Experiments","publication_year":2023,"publication_date":"2023-05-29","ids":{"openalex":"https://openalex.org/W4383108402","doi":"https://doi.org/10.1109/icra48891.2023.10160916"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icra48891.2023.10160916","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5066624236","display_name":"Xuan Cao","orcid":"https://orcid.org/0000-0002-7211-6999"},"institutions":[{"id":"https://openalex.org/I100005738","display_name":"Brigham Young University","ror":"https://ror.org/047rhhm47","country_code":"US","type":"education","lineage":["https://openalex.org/I100005738"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Xuan Cao","raw_affiliation_strings":["Brigham Young University,Computer Science Department,Provo,UT,USA"],"affiliations":[{"raw_affiliation_string":"Brigham Young University,Computer Science Department,Provo,UT,USA","institution_ids":["https://openalex.org/I100005738"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5059420501","display_name":"Jacob W. Crandall","orcid":"https://orcid.org/0000-0002-5602-4146"},"institutions":[{"id":"https://openalex.org/I100005738","display_name":"Brigham Young University","ror":"https://ror.org/047rhhm47","country_code":"US","type":"education","lineage":["https://openalex.org/I100005738"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jacob W. Crandall","raw_affiliation_strings":["Brigham Young University,Computer Science Department,Provo,UT,USA"],"affiliations":[{"raw_affiliation_string":"Brigham Young University,Computer Science Department,Provo,UT,USA","institution_ids":["https://openalex.org/I100005738"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5104175894","display_name":"Ethan Pedersen","orcid":null},"institutions":[{"id":"https://openalex.org/I100005738","display_name":"Brigham Young University","ror":"https://ror.org/047rhhm47","country_code":"US","type":"education","lineage":["https://openalex.org/I100005738"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ethan Pedersen","raw_affiliation_strings":["Brigham Young University,Computer Science Department,Provo,UT,USA"],"affiliations":[{"raw_affiliation_string":"Brigham Young University,Computer Science Department,Provo,UT,USA","institution_ids":["https://openalex.org/I100005738"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5001502533","display_name":"Alvika Gautam","orcid":"https://orcid.org/0000-0003-4595-3748"},"institutions":[{"id":"https://openalex.org/I91045830","display_name":"Texas A&M University","ror":"https://ror.org/01f5ytq51","country_code":"US","type":"education","lineage":["https://openalex.org/I91045830"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Alvika Gautam","raw_affiliation_strings":["Texas A&M University,Department of Mechanical Engineering,College Station,TX,USA"],"affiliations":[{"raw_affiliation_string":"Texas A&M University,Department of Mechanical Engineering,College Station,TX,USA","institution_ids":["https://openalex.org/I91045830"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5077345598","display_name":"Michael A. Goodrich","orcid":"https://orcid.org/0000-0002-2489-5705"},"institutions":[{"id":"https://openalex.org/I100005738","display_name":"Brigham Young University","ror":"https://ror.org/047rhhm47","country_code":"US","type":"education","lineage":["https://openalex.org/I100005738"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Michael A. Goodrich","raw_affiliation_strings":["Brigham Young University,Computer Science Department,Provo,UT,USA"],"affiliations":[{"raw_affiliation_string":"Brigham Young University,Computer Science Department,Provo,UT,USA","institution_ids":["https://openalex.org/I100005738"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.705,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.606989,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":79,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10876","display_name":"Fault Detection and Control Systems","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12423","display_name":"Software Reliability and Analysis Research","score":0.9884,"subfield":{"id":"https://openalex.org/subfields/1712","display_name":"Software"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/abnormality","display_name":"Abnormality","score":0.5354775},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.49961042}],"concepts":[{"id":"https://openalex.org/C90509273","wikidata":"https://www.wikidata.org/wiki/Q11012","display_name":"Robot","level":2,"score":0.7117605},{"id":"https://openalex.org/C739882","wikidata":"https://www.wikidata.org/wiki/Q3560506","display_name":"Anomaly detection","level":2,"score":0.682107},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6697132},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6567483},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.5769524},{"id":"https://openalex.org/C50965678","wikidata":"https://www.wikidata.org/wiki/Q2724302","display_name":"Abnormality","level":2,"score":0.5354775},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.49961042},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3764503},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.3630786},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.0},{"id":"https://openalex.org/C77805123","wikidata":"https://www.wikidata.org/wiki/Q161272","display_name":"Social psychology","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icra48891.2023.10160916","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320338298","funder_display_name":"Office of Naval Research Global","award_id":"N00014-18-1-2503,N00014-16-1-3025"}],"datasets":[],"versions":[],"referenced_works_count":32,"referenced_works":["https://openalex.org/W1173687456","https://openalex.org/W1428571477","https://openalex.org/W1488188683","https://openalex.org/W1522301498","https://openalex.org/W1673310716","https://openalex.org/W1963934847","https://openalex.org/W1969409474","https://openalex.org/W1987971958","https://openalex.org/W2071857596","https://openalex.org/W2073659845","https://openalex.org/W2101234009","https://openalex.org/W2101713460","https://openalex.org/W2132870739","https://openalex.org/W2164314270","https://openalex.org/W2169472038","https://openalex.org/W2330162947","https://openalex.org/W2332485813","https://openalex.org/W2467155776","https://openalex.org/W2502108048","https://openalex.org/W2590377087","https://openalex.org/W2602754294","https://openalex.org/W2803697594","https://openalex.org/W2902843057","https://openalex.org/W2903264324","https://openalex.org/W2962935959","https://openalex.org/W2963998284","https://openalex.org/W3023565369","https://openalex.org/W3038235410","https://openalex.org/W3120598935","https://openalex.org/W3135575787","https://openalex.org/W4221139098","https://openalex.org/W4285102526"],"related_works":["https://openalex.org/W4247543202","https://openalex.org/W4243456421","https://openalex.org/W3093256375","https://openalex.org/W3028882978","https://openalex.org/W2896815346","https://openalex.org/W2417397217","https://openalex.org/W2355857550","https://openalex.org/W2072771697","https://openalex.org/W1841421040","https://openalex.org/W1487766990"],"abstract_inverted_index":{"Proficiency":[0],"self-assessment":[1],"(PSA),":[2],"the":[3,65,183,189,193,215,218],"ability":[4],"to":[5,70,96,109,128,139,181,191],"assess":[6],"how":[7],"well":[8],"one":[9],"can":[10,38,106,162,178],"carry":[11],"out":[12],"a":[13,16,46,80,103,171,204,209],"task,":[14],"is":[15,67,72,75],"desirable":[17],"capability":[18],"of":[19,217],"autonomous":[20],"robot":[21,41,66,198,207,211],"systems.":[22],"Prior":[23],"work":[24],"has":[25,34],"proposed":[26,125],"assumption-alignment":[27],"tracking":[28],"(AAT)":[29],"for":[30,90],"performing":[31],"PSA,":[32],"and":[33,52,74,122,126,208],"shown":[35],"that":[36,102,130,143,170],"it":[37,94],"accurately":[39],"predict":[40],"performance":[42],"in":[43,58,63,187],"real-time":[44],"given":[45],"dataset":[47],"obtained":[48],"from":[49,134,159,202],"both":[50,203],"normal":[51,117,160],"abnormal":[53,59,91,173],"training":[54],"runs.":[55],"Obtaining":[56],"data":[57,88,114,161,174],"conditions":[60,62,137],"(i.e.,":[61],"which":[64,192],"not":[68,77],"prepared":[69],"operate)":[71],"difficult":[73,95],"often":[76],"possible.":[78],"As":[79],"result,":[81],"many":[82],"realistic":[83],"datasets":[84],"contain":[85],"very":[86],"few":[87,172],"points":[89],"conditions,":[92],"making":[93],"apply":[97],"AAT.":[98],"This":[99],"paper":[100],"hypothesizes":[101],"one-class":[104,148,152],"classifier":[105],"be":[107,179],"built":[108],"detect":[110,163],"anomalies":[111,194],"using":[112],"only":[113],"collected":[115],"under":[116],"conditions.":[118,165],"Two":[119],"metrics,":[120],"difference":[121],"separation,":[123],"are":[124,144],"used":[127,180],"demonstrate":[129],"AAT":[131,156],"feature":[132,157],"vectors":[133,158],"different":[135],"running":[136],"tend":[138],"form":[140],"distinct":[141],"clusters":[142],"identifiable":[145],"by":[146],"mainstream":[147],"classification":[149],"algorithms.":[150],"Thus,":[151],"classifiers":[153],"trained":[154],"on":[155],"anomalous":[164],"Furthermore,":[166],"preliminary":[167],"results":[168,201],"suggest":[169],"points,":[175],"if":[176],"available,":[177],"classify":[182],"abnormality":[184],"type":[185],"and,":[186],"turn,":[188],"degree":[190],"will":[195],"likely":[196],"impact":[197],"performance.":[199],"Empirical":[200],"simulated":[205],"navigation":[206],"Sawyer":[210],"manipulating":[212],"blocks":[213],"show":[214],"efficacy":[216],"approach.":[219]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4383108402","counts_by_year":[{"year":2023,"cited_by_count":2}],"updated_date":"2024-12-21T07:17:27.028930","created_date":"2023-07-05"}