{"id":"https://openalex.org/W4383109223","doi":"https://doi.org/10.1109/icra48891.2023.10160596","title":"Failure Detection for Motion Prediction of Autonomous Driving: An Uncertainty Perspective","display_name":"Failure Detection for Motion Prediction of Autonomous Driving: An Uncertainty Perspective","publication_year":2023,"publication_date":"2023-05-29","ids":{"openalex":"https://openalex.org/W4383109223","doi":"https://doi.org/10.1109/icra48891.2023.10160596"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icra48891.2023.10160596","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2301.04421","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5004903867","display_name":"Wenbo Shao","orcid":"https://orcid.org/0000-0001-7047-7398"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wenbo Shao","raw_affiliation_strings":["School of Veh icle and Mobility, Tsinghua University,Beijing,China,100084"],"affiliations":[{"raw_affiliation_string":"School of Veh icle and Mobility, Tsinghua University,Beijing,China,100084","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100600463","display_name":"Yanchao Xu","orcid":"https://orcid.org/0000-0003-3500-3079"},"institutions":[{"id":"https://openalex.org/I125839683","display_name":"Beijing Institute of Technology","ror":"https://ror.org/01skt4w74","country_code":"CN","type":"education","lineage":["https://openalex.org/I125839683","https://openalex.org/I890469752"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yanchao Xu","raw_affiliation_strings":["School of Mechanical Engineering, Beijing Institute of Technology,Beijing,China,100081"],"affiliations":[{"raw_affiliation_string":"School of Mechanical Engineering, Beijing Institute of Technology,Beijing,China,100081","institution_ids":["https://openalex.org/I125839683"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101711125","display_name":"Liang Peng","orcid":"https://orcid.org/0000-0002-8494-2382"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Liang Peng","raw_affiliation_strings":["School of Veh icle and Mobility, Tsinghua University,Beijing,China,100084"],"affiliations":[{"raw_affiliation_string":"School of Veh icle and Mobility, Tsinghua University,Beijing,China,100084","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100361751","display_name":"Jun Li","orcid":"https://orcid.org/0000-0002-0437-5112"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jun Li","raw_affiliation_strings":["School of Veh icle and Mobility, Tsinghua University,Beijing,China,100084"],"affiliations":[{"raw_affiliation_string":"School of Veh icle and Mobility, Tsinghua University,Beijing,China,100084","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5079684072","display_name":"Hong Wang","orcid":"https://orcid.org/0000-0002-5127-2941"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hong Wang","raw_affiliation_strings":["School of Veh icle and Mobility, Tsinghua University,Beijing,China,100084"],"affiliations":[{"raw_affiliation_string":"School of Veh icle and Mobility, Tsinghua University,Beijing,China,100084","institution_ids":["https://openalex.org/I99065089"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.096,"has_fulltext":false,"cited_by_count":13,"citation_normalized_percentile":{"value":0.999916,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":null,"issue":null,"first_page":"12721","last_page":"12728"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11099","display_name":"Autonomous Vehicle Technology and Safety","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11099","display_name":"Autonomous Vehicle Technology and Safety","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2203","display_name":"Automotive Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10370","display_name":"Traffic and Road Safety","score":0.9939,"subfield":{"id":"https://openalex.org/subfields/2213","display_name":"Safety, Risk, Reliability and Quality"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6837239},{"id":"https://openalex.org/C104114177","wikidata":"https://www.wikidata.org/wiki/Q79782","display_name":"Motion (physics)","level":2,"score":0.62926614},{"id":"https://openalex.org/C12713177","wikidata":"https://www.wikidata.org/wiki/Q1900281","display_name":"Perspective (graphical)","level":2,"score":0.6215667},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.539595},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.37088248},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.34179187}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icra48891.2023.10160596","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2301.04421","pdf_url":"https://arxiv.org/pdf/2301.04421","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2301.04421","pdf_url":"https://arxiv.org/pdf/2301.04421","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/16","display_name":"Peace, justice, and strong institutions","score":0.77}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"1964203,52072215"}],"datasets":[],"versions":[],"referenced_works_count":41,"referenced_works":["https://openalex.org/W1749494163","https://openalex.org/W2164411961","https://openalex.org/W2424778531","https://openalex.org/W2531327146","https://openalex.org/W2592505114","https://openalex.org/W2600383743","https://openalex.org/W2786599352","https://openalex.org/W2806471870","https://openalex.org/W2951883849","https://openalex.org/W2962901581","https://openalex.org/W2963238274","https://openalex.org/W2963906196","https://openalex.org/W2967177252","https://openalex.org/W2971130081","https://openalex.org/W2971910165","https://openalex.org/W2980087597","https://openalex.org/W2981786146","https://openalex.org/W2997958396","https://openalex.org/W3005861412","https://openalex.org/W3010072020","https://openalex.org/W3026544131","https://openalex.org/W3027075889","https://openalex.org/W3034722190","https://openalex.org/W3035574168","https://openalex.org/W3098341014","https://openalex.org/W3109915642","https://openalex.org/W3116651890","https://openalex.org/W3119981760","https://openalex.org/W3182665604","https://openalex.org/W3195789010","https://openalex.org/W3203374357","https://openalex.org/W3204875639","https://openalex.org/W3209432202","https://openalex.org/W4210389721","https://openalex.org/W4285272860","https://openalex.org/W4287073825","https://openalex.org/W4287083725","https://openalex.org/W4301266050","https://openalex.org/W4308080616","https://openalex.org/W4324016434","https://openalex.org/W582134693"],"related_works":["https://openalex.org/W4394896187","https://openalex.org/W4386462264","https://openalex.org/W4364306694","https://openalex.org/W4312192474","https://openalex.org/W4306674287","https://openalex.org/W4283697347","https://openalex.org/W3170094116","https://openalex.org/W3107602296","https://openalex.org/W3046775127","https://openalex.org/W2961085424"],"abstract_inverted_index":{"Motion":[0],"prediction":[1,28,91,111,122,143],"is":[2,41,54,116,136],"essential":[3],"for":[4,79,89,138,141],"safe":[5],"and":[6,13,75,100,103,130],"efficient":[7],"autonomous":[8,49],"driving.":[9],"However,":[10],"the":[11,26,33,65,93,131],"inexplicability":[12],"uncertainty":[14,94,99,106,124,127,135],"of":[15,25,67,86],"complex":[16],"artificial":[17],"intelligence":[18],"models":[19],"may":[20,31,76],"lead":[21],"to":[22,35,43,46,63,109],"unpredictable":[23],"failures":[24],"motion":[27,90,98,121,142],"module,":[29],"which":[30],"mislead":[32],"system":[34],"make":[36],"unsafe":[37],"decisions.":[38],"Therefore,":[39],"it":[40],"necessary":[42],"develop":[44],"methods":[45],"guarantee":[47],"reliable":[48],"driving,":[50],"where":[51],"failure":[52,80,87,139],"detection":[53,88,140],"a":[55,69,84],"potential":[56],"direction.":[57],"Uncertainty":[58],"estimates":[59],"can":[60],"be":[61,77,146],"used":[62,147],"quantify":[64],"degree":[66],"confidence":[68],"model":[70,101],"has":[71],"in":[72],"its":[73],"predictions":[74],"valuable":[78],"detection.":[81],"We":[82],"propose":[83],"framework":[85],"from":[92],"perspective,":[95],"considering":[96],"both":[97],"uncertainty,":[102],"formulate":[104],"various":[105],"scores":[107],"according":[108],"different":[110,120],"stages.":[112],"The":[113],"proposed":[114],"approach":[115],"evaluated":[117],"based":[118],"on":[119],"algorithms,":[123],"estimation":[125],"methods,":[126],"scores,":[128],"etc.,":[129],"results":[132],"show":[133],"that":[134],"promising":[137],"but":[144],"should":[145],"with":[148],"caution.":[149]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4383109223","counts_by_year":[{"year":2024,"cited_by_count":7},{"year":2023,"cited_by_count":5}],"updated_date":"2025-01-21T23:57:33.750629","created_date":"2023-07-05"}