{"id":"https://openalex.org/W4383109328","doi":"https://doi.org/10.1109/icra48891.2023.10160343","title":"ERASE-Net: Efficient Segmentation Networks for Automotive Radar Signals","display_name":"ERASE-Net: Efficient Segmentation Networks for Automotive Radar Signals","publication_year":2023,"publication_date":"2023-05-29","ids":{"openalex":"https://openalex.org/W4383109328","doi":"https://doi.org/10.1109/icra48891.2023.10160343"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icra48891.2023.10160343","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2209.12940","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5076564856","display_name":"Shihong Fang","orcid":null},"institutions":[{"id":"https://openalex.org/I57206974","display_name":"New York University","ror":"https://ror.org/0190ak572","country_code":"US","type":"education","lineage":["https://openalex.org/I57206974"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Shihong Fang","raw_affiliation_strings":["Department of Electrical and Computer Engineering, Learning Systems Laboratory, New York University, NY, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering, Learning Systems Laboratory, New York University, NY, USA","institution_ids":["https://openalex.org/I57206974"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100754395","display_name":"Haoran Zhu","orcid":"https://orcid.org/0009-0000-0942-1483"},"institutions":[{"id":"https://openalex.org/I57206974","display_name":"New York University","ror":"https://ror.org/0190ak572","country_code":"US","type":"education","lineage":["https://openalex.org/I57206974"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Haoran Zhu","raw_affiliation_strings":["Department of Electrical and Computer Engineering, Learning Systems Laboratory, New York University, NY, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering, Learning Systems Laboratory, New York University, NY, USA","institution_ids":["https://openalex.org/I57206974"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5078561602","display_name":"Devansh Bisla","orcid":null},"institutions":[{"id":"https://openalex.org/I57206974","display_name":"New York University","ror":"https://ror.org/0190ak572","country_code":"US","type":"education","lineage":["https://openalex.org/I57206974"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Devansh Bisla","raw_affiliation_strings":["Department of Electrical and Computer Engineering, Learning Systems Laboratory, New York University, NY, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering, Learning Systems Laboratory, New York University, NY, USA","institution_ids":["https://openalex.org/I57206974"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5006452373","display_name":"Anna Choromanska","orcid":"https://orcid.org/0000-0002-2556-7009"},"institutions":[{"id":"https://openalex.org/I57206974","display_name":"New York University","ror":"https://ror.org/0190ak572","country_code":"US","type":"education","lineage":["https://openalex.org/I57206974"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Anna Choromanska","raw_affiliation_strings":["Department of Electrical and Computer Engineering, Learning Systems Laboratory, New York University, NY, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering, Learning Systems Laboratory, New York University, NY, USA","institution_ids":["https://openalex.org/I57206974"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5034856051","display_name":"Satish Ravindran","orcid":null},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Satish Ravindran","raw_affiliation_strings":["NXP Semiconductors, San Jose, CA, USA"],"affiliations":[{"raw_affiliation_string":"NXP Semiconductors, San Jose, CA, USA","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5053020496","display_name":"Dongyin Ren","orcid":"https://orcid.org/0000-0001-9868-4858"},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Dongyin Ren","raw_affiliation_strings":["NXP Semiconductors, San Jose, CA, USA"],"affiliations":[{"raw_affiliation_string":"NXP Semiconductors, San Jose, CA, USA","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101950479","display_name":"Ryan Wu","orcid":"https://orcid.org/0009-0005-1419-3768"},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ryan Wu","raw_affiliation_strings":["NXP Semiconductors, San Jose, CA, USA"],"affiliations":[{"raw_affiliation_string":"NXP Semiconductors, San Jose, CA, USA","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.752,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.99995,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":88,"max":91},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11038","display_name":"Advanced SAR Imaging Techniques","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11038","display_name":"Advanced SAR Imaging Techniques","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11609","display_name":"Geophysical Methods and Applications","score":0.998,"subfield":{"id":"https://openalex.org/subfields/2212","display_name":"Ocean Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7896728},{"id":"https://openalex.org/C554190296","wikidata":"https://www.wikidata.org/wiki/Q47528","display_name":"Radar","level":2,"score":0.69018006},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.68382704},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.59348065},{"id":"https://openalex.org/C10929652","wikidata":"https://www.wikidata.org/wiki/Q7279985","display_name":"Radar imaging","level":3,"score":0.58566844},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.49061742},{"id":"https://openalex.org/C79403827","wikidata":"https://www.wikidata.org/wiki/Q3988","display_name":"Real-time computing","level":1,"score":0.42085063},{"id":"https://openalex.org/C526921623","wikidata":"https://www.wikidata.org/wiki/Q190117","display_name":"Automotive industry","level":2,"score":0.41236514},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.328378},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.14381692},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.1416783},{"id":"https://openalex.org/C146978453","wikidata":"https://www.wikidata.org/wiki/Q3798668","display_name":"Aerospace engineering","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icra48891.2023.10160343","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.12940","pdf_url":"https://arxiv.org/pdf/2209.12940","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2209.12940","pdf_url":"https://arxiv.org/pdf/2209.12940","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Industry, innovation and infrastructure","score":0.49,"id":"https://metadata.un.org/sdg/9"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":29,"referenced_works":["https://openalex.org/W1553707579","https://openalex.org/W1861492603","https://openalex.org/W1901129140","https://openalex.org/W2096579040","https://openalex.org/W2313953460","https://openalex.org/W2558027072","https://openalex.org/W2891649842","https://openalex.org/W2962851801","https://openalex.org/W2963121255","https://openalex.org/W2963125977","https://openalex.org/W2963163009","https://openalex.org/W2963182550","https://openalex.org/W2964309882","https://openalex.org/W2969150035","https://openalex.org/W2990710319","https://openalex.org/W3012573144","https://openalex.org/W3034971973","https://openalex.org/W3035574168","https://openalex.org/W3036962712","https://openalex.org/W3091337047","https://openalex.org/W3093042376","https://openalex.org/W3116028392","https://openalex.org/W3120351402","https://openalex.org/W3120815051","https://openalex.org/W3135437426","https://openalex.org/W3161421216","https://openalex.org/W3180629550","https://openalex.org/W4214736753","https://openalex.org/W4230808100"],"related_works":["https://openalex.org/W4382644535","https://openalex.org/W4313855562","https://openalex.org/W2765894405","https://openalex.org/W2742737769","https://openalex.org/W2522768275","https://openalex.org/W2373392303","https://openalex.org/W2352938035","https://openalex.org/W2351672553","https://openalex.org/W2091422131","https://openalex.org/W1884735063"],"abstract_inverted_index":{"Among":[0],"various":[1],"sensors":[2],"for":[3,103,187],"assisted":[4],"and":[5,17,34,123],"autonomous":[6],"driving":[7],"systems,":[8],"automotive":[9,189],"radar":[10,32,42,65,90,105,120,138],"has":[11,44],"been":[12],"considered":[13],"as":[14],"a":[15,118,183],"robust":[16],"low-cost":[18],"solution":[19],"even":[20],"in":[21,172],"adverse":[22],"weather":[23],"or":[24,55],"lighting":[25],"conditions.":[26],"With":[27],"the":[28,88,99,110,144,161,177],"recent":[29],"development":[30],"of":[31,59,95,113],"technologies":[33],"open-sourced":[35],"annotated":[36],"data":[37],"sets,":[38],"semantic":[39,126,139],"segmentation":[40,140],"with":[41],"signals":[43,66,91],"become":[45],"very":[46],"promising.":[47],"However,":[48],"existing":[49],"methods":[50],"are":[51],"either":[52],"computationally":[53],"expensive":[54],"discard":[56],"significant":[57,170],"amounts":[58],"valuable":[60],"information":[61],"from":[62],"raw":[63,89,104],"3D":[64],"by":[67,167],"reducing":[68],"them":[69],"to":[70,86,143,153],"2D":[71],"planes":[72],"via":[73],"averaging.":[74],"In":[75],"this":[76],"work,":[77],"we":[78,158],"introduce":[79],"ERASE-Net,":[80],"an":[81],"Efficient":[82],"RAdar":[83],"SEgmentation":[84],"Network":[85],"segment":[87],"semantically.":[92],"The":[93],"core":[94],"our":[96,131,149],"approach":[97,150],"is":[98],"novel":[100],"detect-then-segment":[101],"method":[102,132],"signals.":[106],"It":[107],"first":[108],"detects":[109],"center":[111],"point":[112],"each":[114],"object,":[115],"then":[116],"extracts":[117],"compact":[119],"signal":[121],"representation,":[122],"finally":[124],"performs":[125],"segmentation.":[127],"We":[128],"show":[129,159],"that":[130,160],"can":[133,164],"achieve":[134],"superior":[135],"performance":[136],"on":[137],"task":[141],"compared":[142],"state-of-the-art":[145],"(SOTA)":[146],"technique.":[147],"Furthermore,":[148],"requires":[151],"up":[152],"20\u00d7less":[154],"computational":[155],"resources.":[156],"Finally,":[157],"proposed":[162],"ERASE-Net":[163],"be":[165],"compressed":[166],"40%":[168],"without":[169],"loss":[171],"performance,":[173],"significantly":[174],"more":[175,184],"than":[176],"SOTA":[178],"network,":[179],"which":[180],"makes":[181],"it":[182],"promising":[185],"candidate":[186],"practical":[188],"applications.":[190]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4383109328","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":1}],"updated_date":"2024-12-11T11:28:16.801962","created_date":"2023-07-05"}