{"id":"https://openalex.org/W3206683563","doi":"https://doi.org/10.1109/icra48506.2021.9560844","title":"ACRONYM: A Large-Scale Grasp Dataset Based on Simulation","display_name":"ACRONYM: A Large-Scale Grasp Dataset Based on Simulation","publication_year":2021,"publication_date":"2021-05-30","ids":{"openalex":"https://openalex.org/W3206683563","doi":"https://doi.org/10.1109/icra48506.2021.9560844","mag":"3206683563"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icra48506.2021.9560844","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2011.09584","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5076300410","display_name":"Clemens Eppner","orcid":"https://orcid.org/0000-0002-5398-4037"},"institutions":[{"id":"https://openalex.org/I4210127875","display_name":"Nvidia (United States)","ror":"https://ror.org/03jdj4y14","country_code":"US","type":"company","lineage":["https://openalex.org/I4210127875"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Clemens Eppner","raw_affiliation_strings":["NVIDIA (USA)"],"affiliations":[{"raw_affiliation_string":"NVIDIA (USA)","institution_ids":["https://openalex.org/I4210127875"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021728625","display_name":"Arsalan Mousavian","orcid":"https://orcid.org/0000-0001-9356-9455"},"institutions":[{"id":"https://openalex.org/I4210127875","display_name":"Nvidia (United States)","ror":"https://ror.org/03jdj4y14","country_code":"US","type":"company","lineage":["https://openalex.org/I4210127875"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Arsalan Mousavian","raw_affiliation_strings":["NVIDIA (USA)"],"affiliations":[{"raw_affiliation_string":"NVIDIA (USA)","institution_ids":["https://openalex.org/I4210127875"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5108257764","display_name":"Dieter Fox","orcid":"https://orcid.org/0009-0009-4694-9127"},"institutions":[{"id":"https://openalex.org/I201448701","display_name":"University of Washington","ror":"https://ror.org/00cvxb145","country_code":"US","type":"education","lineage":["https://openalex.org/I201448701"]},{"id":"https://openalex.org/I4210127875","display_name":"Nvidia (United States)","ror":"https://ror.org/03jdj4y14","country_code":"US","type":"company","lineage":["https://openalex.org/I4210127875"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Dieter Fox","raw_affiliation_strings":["NVIDIA, USA; Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA"],"affiliations":[{"raw_affiliation_string":"NVIDIA, USA; Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA","institution_ids":["https://openalex.org/I201448701","https://openalex.org/I4210127875"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":37.249,"has_fulltext":false,"cited_by_count":90,"citation_normalized_percentile":{"value":0.999825,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10653","display_name":"Robotic Grasping and Learning from Demonstration","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10653","display_name":"Robotic Grasping and Learning from Demonstration","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10462","display_name":"Reinforcement Learning Algorithms","score":0.9459,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11398","display_name":"Gesture Recognition in Human-Computer Interaction","score":0.9234,"subfield":{"id":"https://openalex.org/subfields/1709","display_name":"Human-Computer Interaction"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/acronym","display_name":"Acronym","score":0.9226763},{"id":"https://openalex.org/keywords/continuous-recognition","display_name":"Continuous Recognition","score":0.51703},{"id":"https://openalex.org/keywords/gesture-recognition","display_name":"Gesture Recognition","score":0.509621},{"id":"https://openalex.org/keywords/robot-learning","display_name":"Robot Learning","score":0.500269}],"concepts":[{"id":"https://openalex.org/C171268870","wikidata":"https://www.wikidata.org/wiki/Q1486676","display_name":"GRASP","level":2,"score":0.9829782},{"id":"https://openalex.org/C482391","wikidata":"https://www.wikidata.org/wiki/Q101244","display_name":"Acronym","level":2,"score":0.9226763},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72400236},{"id":"https://openalex.org/C2778755073","wikidata":"https://www.wikidata.org/wiki/Q10858537","display_name":"Scale (ratio)","level":2,"score":0.5309434},{"id":"https://openalex.org/C90509273","wikidata":"https://www.wikidata.org/wiki/Q11012","display_name":"Robot","level":2,"score":0.51691365},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4459984},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.12533066},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/icra48506.2021.9560844","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2011.09584","pdf_url":"https://arxiv.org/pdf/2011.09584","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2011.09584","pdf_url":"https://arxiv.org/pdf/2011.09584","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/11","display_name":"Sustainable cities and communities","score":0.76}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":38,"referenced_works":["https://openalex.org/W1503925285","https://openalex.org/W1892339738","https://openalex.org/W1932888261","https://openalex.org/W1999156278","https://openalex.org/W2112961542","https://openalex.org/W2123435073","https://openalex.org/W2126496149","https://openalex.org/W2157692698","https://openalex.org/W2201912979","https://openalex.org/W2523315006","https://openalex.org/W2563421280","https://openalex.org/W2572996265","https://openalex.org/W2586510000","https://openalex.org/W2600030077","https://openalex.org/W2736762515","https://openalex.org/W2787562104","https://openalex.org/W2808521881","https://openalex.org/W2824754393","https://openalex.org/W2888922990","https://openalex.org/W2962722175","https://openalex.org/W2962736495","https://openalex.org/W2962737955","https://openalex.org/W2962821282","https://openalex.org/W2962875890","https://openalex.org/W2963326767","https://openalex.org/W2963849966","https://openalex.org/W2964214518","https://openalex.org/W2984854289","https://openalex.org/W2985060393","https://openalex.org/W2986303149","https://openalex.org/W2996175471","https://openalex.org/W3022674252","https://openalex.org/W3035198432","https://openalex.org/W3090814639","https://openalex.org/W3098276559","https://openalex.org/W4211241511","https://openalex.org/W4212847497","https://openalex.org/W4287995734"],"related_works":["https://openalex.org/W4319323735","https://openalex.org/W4317856743","https://openalex.org/W4287594442","https://openalex.org/W4224143833","https://openalex.org/W3206683563","https://openalex.org/W3102191234","https://openalex.org/W2963326767","https://openalex.org/W2768246685","https://openalex.org/W2599055196","https://openalex.org/W2557924869"],"abstract_inverted_index":{"We":[0,37],"introduce":[1],"ACRONYM,":[2],"a":[3,34],"dataset":[4,14,46],"for":[5],"robot":[6],"grasp":[7,30,55],"planning":[8,56],"based":[9],"on":[10],"physics":[11,35],"simulation.":[12],"The":[13],"contains":[15],"17.7M":[16],"parallel-jaw":[17],"grasps,":[18],"spanning":[19],"8872":[20],"objects":[21],"from":[22,33],"262":[23],"different":[24],"categories,":[25],"each":[26],"labeled":[27],"with":[28],"the":[29,39,65],"result":[31],"obtained":[32],"simulator.":[36],"show":[38],"value":[40],"of":[41],"this":[42],"large":[43],"and":[44,70],"diverse":[45],"by":[47],"using":[48],"it":[49],"to":[50,64],"train":[51],"two":[52],"state-of-the-art":[53],"learning-based":[54],"algorithms.":[57],"Grasp":[58],"performance":[59],"improves":[60],"significantly":[61],"when":[62],"compared":[63],"original":[66],"smaller":[67],"dataset.":[68],"Data":[69],"tools":[71],"can":[72],"be":[73],"accessed":[74],"at":[75],"https://sites.google.com/nvidia.com/graspdataset.":[76]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3206683563","counts_by_year":[{"year":2024,"cited_by_count":24},{"year":2023,"cited_by_count":31},{"year":2022,"cited_by_count":18},{"year":2021,"cited_by_count":11},{"year":2020,"cited_by_count":1}],"updated_date":"2024-11-27T09:21:43.923645","created_date":"2021-10-25"}